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Abstract

The usage of Micro Unmanned Aerial Vehicles (MUAV) as mobile sensor platforms
is constantly increasing in the scientific, as well as in the civilian sector. A variety
of requirements evolve from upcoming mission tasks like documentation, surveying
and inspection in agriculture and geography, as well as in the industry. Many ap-
plications, such as the creation of orthoimages or the inspection of industrial plants
need accurate position information in real-time, both for safety-in-flight reasons and
for enriching sensor data by the provision of location.
As current MUAVs make use of common Global Positioning System receivers and,
therefore, do not guarantee reliable high-precision positioning, this work exam-
ines the demands on an improved Differential Global Navigation Satellite System
(DGNSS) positioning system for its integration into an existing MUAV platform. It
proposes a flexible system architecture and presents a modular prototype that offers
the possibility to exchange discrete components for making use of more sophisti-
cated technologies like Precise DGNSS. The described prototype already guarantees
horizontal positioning accuracy of 35 cm in real-time, which can be considered as
sufficient for the majority of applications.
Consequently, this work focuses on the integration of position and additional nav-
igation data into an existing Sensor Platform Framework software, which is able
to synchronize sensor and navigation information on-the-fly. It introduces a MUAV
platform-specific Input-Plugin for decoding the telemetry data stream and for the
communication with the framework. As the framework is able to forward the pro-
cessed geodata in a standardized way according to the guidelines of the Open Geospa-
tial Consortium Inc., the data can be exploited by any kind of Sensor Web Service
in near real-time.
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1. Introduction

1. Introduction

Micro Unmanned Aerial Vehicles (MUAV) are a recent development as powerful
means in fields, i.e. surveying, monitoring and disaster management. As they are
equipped with additional sensors, MUAVs evolve to mobile sensor platforms, which
can be used to gather sensor observations in various mission scenarios. MUAVs
strongly rely on their internal navigation sensors, which guarantee stable maneuver
in flight and offer the possibilty to produce geodata by enriching sensor observations
with the sensor platform’s location. Besides, these navigation sensors enable MUAVs
to automatically execute predefined waypoint routes and waypoint-specific mission
tasks. Supporting these abilities, it is of interest to improve the MUAVs navigation
ability and to facilitate access to their navigation data.

1.1. Motivation

MUAVs are commonly sold as preconfigured systems with definite hardware and
software components. Navigation performance and data access heavily depend on
manufacturer-specific navigation sensors and software interfaces.

The absolute positioning efficiency of MUAVs currently builds on simple code-based
Global Navigation Satellite System (GNSS) receivers and their resulting accuracy
perfomance. Flight missions in industry, i.e. the inspection of industrial plants,
pipelines or solar parks demand high precision absolute positioning. MUAVs of-
ten need to approach objects of interest and at the same time avoid damages to the
sensed object or themselves in case of a crash. Besides, scientific research, especially
in the field of close-range photogrammetry, requires accurate direct sensor orienta-
tion [Remondino et al., 2011]. In the cited work, it is mentioned that the use of more
sophisticated GNSS positioning techniques would improve the quality of position-
ing, but would result in too complex, expensive and heavy systems. This statement
leads to the question of developing a MUAV-specifc positioning system, which is
able to improve absolute positioning by using inexpensive and low weight compo-
nents. However, as costs are an important factor in sales, this work concentrates
on the technical possibilities that are given to develop a MUAV-specific improved
Differential GNSS (DGNSS) positioning system.

1



1. Introduction

Besides improving absolute positioning, the acquisition and distribution of MUAV
navigation sensor data is a crucial element for the use of gathered sensor observa-
tions. According to [Jirka et al., 2010], the integration of sensor data into various
application systems, is a challenging task due to the variety of different data formats.
As every MUAV producer builds on generic data formats and software applications,
there is a high demand in exchanging sensor observations in an interoperable and
standardized way. The Open Geospatial Consortium Inc. (OGC), which is an inter-
national organisation for encouraging the development of open geostandards, educed
the Sensor Web Enablement (SWE) initiative. The SWE initiative resulted in a
framework, which offers two sets of standards for sensor data exchange. Using these
two sets as a basis, this thesis concentrates on the implementation of a software,
which enables a MUAV to forward its navigation sensor information to the Sensor
Web and to distribute it via Sensor Web Services (SWS) on-the-fly.

1.2. Structure

The thesis is structured in eight chapters, which can be roughly divided into three
blocks. The first block introduces the thesis’ objectives and the motivation, which led
to writing this work (see Chapter 1). It contains a description of the fundamentals
of the MD4-1000 MUAV, DGNSS and OGC’s SWE and establishes the basis for the
understanding of the concepts and strategies, which are used in the second part (see
Chapter 2). Moreover, Chapter 3 analyzes the necessary requirements.

The second block describes the architecture of the improved DGNSS-based position-
ing solution and the design of the software, which has been developed for providing
the platform’s navigation data to SWSs. Chapter 4 shows the concepts and strate-
gies, whereas Chapter 5 considers the implementation of all hardware and software
components.

The last block comprises an analysis of the implemented positioning system’s accu-
racy and addresses the possibility of using the platform’s navigation sensor data in
SWS (see Chapter 6). Chapter 7 discusses the outcomes and outlines for possible
future work on the MD4-1000’s positioning system and the usage of its sensor data.
Finally, Chapter 8 summarizes this Master’s Thesis.

2



2. Fundamentals

2. Fundamentals

The following sections will provide a short introduction to the basics of common
rotary MUAVs, using the example of the MD4-1000 Sensor Platform and present
an overview of the technology, which is used for positioning and navigation. Fur-
thermore, the concept of Differential GNSS will be illustrated to give fundamental
understanding and its use in the course of this thesis. Ultimately, the Sensor Web
and a solution to forward sensor data to Sensor Web Services will be elucidated.

This chapter will establish the basis for the understanding of the concepts and
strategies of an improved DGNSS-based positioning architecture and the provision
of MUAV sensor data to Sensor Web Services.

2.1. MD4-1000 as MUAV Sensor Platform

The MD4-1000 is a MUAV Sensor Platform, developed for unmanned aerial missions
in the fields of documentation, coordination, exploration, surveying, communication,
inspection and observation [MD, 2011c].

Figure 2.1.: MD4-1000 Sensor Platform in the air and on the ground.

The MD4-1000 is a remote controlled (RC) MUAV with four electrically operated
rotors (see Figure 2.1). Due to its dimensions of 1030 mm from rotor shaft to rotor
shaft and its weight of appr. 2650 g, this MUAV is capable of carrying a maximum

3



2. Fundamentals

sensor payload mass of 1200 g at a flight time of up to 70 minutes. Detailed technical
information about the MD4-1000 is given in Table 2.1.

Technical Specifications
Climb rate 7.5 m

s

Cruising speed 15 m
s

Peak thrust 118 N
Vehicle mass approx. 2650 g (dep. on configuration)
Recommended payload mass 800 g
Maximum payload mass 1200 g
Maximum take-off weight 5550 g
Dimensions 1030 mm from rotor shaft to rotor shaft
Flight time up to 70 minutes (dep. on load/wind/battery)
Battery 22.2 V, 6S2P 12.2 Ah or 6S3P 18.3 Ah LiPo

Operational Conditions
Temperature −10 ◦C to +50 ◦C
Humidity max. 90 %
Wind tolerance steady pictures up to 6 m

s

Flight radius min. 500 m on RC, with WP up to 40 km
Ceiling altitude up to 1000 m
Take-off altitude up to 4000 m ASL

Table 2.1.: Technical specifications and operational conditions of the MD4-1000 (fol-
lowing [MD, 2011b]).

The flight characteristics of the MD4-1000 resemble those of a helicopter with its
possibility to roll, pitch and yaw, as well as to take off and land vertically. Figure
2.2 shows that in contrast to a helicopter’s single rotor system, rolling, pitching
and yawing of a MD4-1000 is managed by using its four inter-coordinated rotors at
different rotary speeds [Büchi, 2010; p. 9].

Since the stabilization of the MUAV is achieved through adjusting each rotor’s ro-
tary speed individually, this would become far too complex for manual handling by a
human pilot. As a consequence, a MUAV is equipped with several navigation sensors
and a microcontroller unit to exploit the sensor information for a constant determi-
nation of the MUAV’s position and attitude [Büchi, 2010; p. 14]. This information
is interpreted by the microcontroller and processed to rotor control commands in
order to guarantee stable maneuver in flight, position hold and, moreover, to execute
predefined flight plan programs autonomously. Due to these facts, the sensors are
essential components for the navigation of a MUAV and, therefore, briefly intro-

4



2. Fundamentals

Figure 2.2.: Attitude of a MUAV at different rotary speeds.

duced in the following three sections. Subsequent to these sections, the integration
of the individual sensors to a combined navigation system is described followed by
auxiliary information about the MD4-1000 Sensor Platform System.

2.1.1. Inertial Navigation System

The Inertial Navigation System (INS) constitutes one of the key components of ev-
ery MUAV. Inertial navigation is a self-contained navigation technique, in which
measurements provided by accelerometers and gyroscopes are used to track the po-
sition and orientation of an object relative to a known starting point, orientation
and velocity [Woodman, 2007]. It is in principle a dead reckoning navigation tech-
nique, based on a combination of a microcontroller for processing and an Inertial
Measurement Unit (IMU) for measuring sensor values.

As modern Micro Electro Mechanical System (MEMS) sensors are small, lightweight
and cheap in production, these MEMS are the preferred inertial sensors of Micro
UAVs in todays use [Hoffmann, 2010]. Accordingly, these sensors are used in the
MD4-1000 as well, which is equipped with three orthogonally aligned rate gyroscopes
to measure angular velocities and three also orthogonally aligned accelerometers to
detect linear accelerations. In combination, these sensors form the MD4-1000’s IMU
(see Figure 2.3).

In order to determine position and orientation, the microdrones Navigation Con-
troller (NC) makes use of the sensor information provided by the IMU and pro-
cesses this information via a strapdown inertial navigation algorithm. This algorithm

5



2. Fundamentals

Figure 2.3.: Avionics of a MD4-1000 with IMU and two 32-bit microcontrollers [MD,
2011b].

is designed to calculate the current navigation solution by using detected angular
velocities and accelerations of a preceding point in time [Wendel, 2007; p. 45].

Figure 2.4.: Strapdown inertial navigation algorithm [Woodman, 2007].

Figure 2.4 depicts a basic overview of a strapdown algorithm. The MUAV’s orien-
tation change, relative to the preceding measurement, is tracked by integrating the
angular velocity signals, obtained from the rate gyroscopes. The change in position
is exploited in several steps. First of all, the acceleration signals gathered from the
accelerometers are projected into a global frame of reference. Second, acceleration
due to gravity is subtracted. Third, the remaining accelerations are integrated twice;
to obtain velocity by a first integration and to gain displacement by a second one
[Woodman, 2007]. More detailed information about the IMU, the strapdown algo-
rithm and the different frames of reference, which are involved, can be found for
instance in [Hoffmann, 2010], [Wendel, 2007] and [Woodman, 2007].

6



2. Fundamentals

2.1.2. Global Navigation Satellite System

Since the INS provides relative position and attitude information related to an iner-
tial starting point, additional navigation information is needed to determine absolute
spatial orientation. Hence, the MD4-1000 is equipped with a GNSS receiver to ob-
tain satellite based position information to determine the starting point in an earth
centered, earth fixed reference frame.

The built-in receiver of the MD4-1000 at hand is a standard low-cost ublox LEA-4H
module, connected to a passive antenna. The system is capable of tracking satellites
from the US-American Global Positioning System (GPS) and to calculate its posi-
tion by exploiting the coarse/acquisition (C/A) code, which is modulated to the L1
carrier signal distributed by the GPS satellites. Besides, this configuration is able
to gather signal corrections broadcasted by Satellite Based Augmentation Systems
(SBAS), such as the European Geostationary Navigation Overlay Service (EGNOS)
and to process them in the positioning algorithm. This setting is already a satellite
based augmented Differential GPS (DGPS) solution that ensures 2.0 m CEP501 ac-
curacy [Ublox, 2007]. A detailed description of its evaluated accuracy can be found
in Section 6.1.3. For further reading about the basic GNSS positioning principle
please refer to [Bauer, 2003], [Wendel, 2007] and [El-Rabbany, 2002].

2.1.3. Magnetometer and Barometer

In addition to the above mentioned navigation sensors, the MD4-1000 is equipped
with two further sensors, i.e. a magnetometer and a barometer, backing the INS
and GNSS solution. The following paragraphs will briefly explain the functionality
of these two sensors.

A standard MUAV magnetometer is a MEMS 3-axis magnetic field sensor. By using
a coarse position information for the determination of the Earth’s magnetic field,
in combination with updated attitude data of the MUAV, the magnetometer forms
a tilt compensated compass. It therefore provides absolute orientation of the yaw-
vector to the MUAV navigation system [Wendel, 2007; p. 285].

As the accuracy of the altitude information of the MUAV navigation solution can be
increased by a barometric sensor, such a sensor is used in the MD4-1000 [MD, 2011b]
to gather information by detecting changes in the atmospheric air pressure. These
changes in air pressure are converted to relative height measurements related to

1CEP50 = Circular Error Probability: The radius of a horizontal circle, centered at the antenna’s
true position, containing 50 % of the fixes.
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the starting height to support the navigation system’s calculation of altitude [Buss,
2011].

2.1.4. Navigation Sensor Integration

Integrated navigation is a combination of different navigation sensors and navi-
gation principles. By combining different sensors and principles, disadvantages of
using a single sensor or principle can be compensated. As a result, the MUAV nav-
igation system is characterized by a higher redundancy and performance [Wendel,
2007; p. 191].

All aforementioned navigation sensors and navigation principles are integrated in
the navigation system of the MD4-1000. Figure 2.5 shows a work flow of how these
different components act together, to create a reliable navigation solution.

Figure 2.5.: Determination of spatial position and attitude by integrating different
navigation sensors and principles.

The central element of this integrated navigation system is a collection of navigation
filters, which are run on the microdrones NC. These filters, which are algorithms,
combine and process sensor data provided by the different navigation sensors. The
INS, which is placed on the left side of this overview, is part of the main calculation
loop. The relative position and attitude values, calculated by the strapdown algo-
rithm, form a first navigation solution for the MUAV’s navigation system. As MEMS
gyroscopes and accelerometers possess errors, which increase over time [Woodman,
2007], position and velocity information provided by the GNSS, is integrated into the
navigation filters to support the INS. In addition, absolute yaw-angle values from the
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magnetometer, as well as relative height changes from the barometer are supplied
to the different filters. Combining all this information, the navigation filter algo-
rithms calculate real-time corrections to re-adjust the INS on-the-fly. By using this
technique, it is guaranteed that the best possible navigation solution is calculated.
Moreover, if one sensor or navigation principle is omitted because of technical prob-
lems or reasons of inaccuracy, the redundancy of navigation filters will compensate
this loss of information [Wendel, 2007; p.283].

2.1.5. Sensors as Payload

To complete the MD4-1000 Sensor Platform System, this MUAV has increased pay-
load capability (see 2.1), in order to be able to mount additional sensors for detecting
phenomena of many kinds. Thus, the MUAV is equipped with a payload take-up sys-
tem on its bottom side, to attach carbon fiber mounting frames customized for the
individual sensor types (see Figure 2.6). In the majority of cases, camera systems are
mounted to gather visual data on-the-fly [MD, 2011b]. Additionally, this mounting
system offers functionality to install any kind of low-weight sensor, e.g. environmen-
tally sensing devices for the detection of humidity, temperature, gas concentration
and many more.

Figure 2.6.: Payload take-up system and downlink transmitter of a MD4-1000 (fol-
lowing [MD, 2011b]).

2.1.6. Telemetry

The MD4-1000 is able to broadcast a system downlink message, which provides
sensor information about its navigation mode, machine status, RC values, motors,
timers, position, speed, attitude, altitude, temperature, magnetometer, distance to

9
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its first position fix, waypoints and payload, as well as a video signal from a poten-
tially mounted optical camera system [MD, 2010b]. Therefore, a downlink transmit-
ter is used (see Figure 2.6), which operates in a frequency range of 2.2 GHz to 2.6
GHz with a low signal runtime of approximately 40 ms [MD, 2011b].

The transmitted signals are received by a base receiver station, which automatically
preprocesses the telemetry signal of the MUAV, for the use in a USB-connected
notebook. A special mdCockpit software, which has been installed on the notebook,
enables a real-time surveillance of all flight parameters and provides the downlink
message in two ways for subsequent processing [MD, 2010a]. The downlink message
is stored in a log file on the notebook’s hard disk following predefined formatting
rules, which can be seen in [MD, 2010b]. In addition, the mdCockpit application
program is implementing a named pipe server for querying data in real time [MD,
2011a].

So far, the most important technical capabilities of the MD4-1000 Sensor Platform
have been identified in the preceding sections. Moreover, it was shown how the inter-
action of all navigation components leads to a reliable navigation solution. As this
thesis does not cover the complete range of possibilities to improve the navigation
of a MUAV, it concentrates on the improvement of one single component of the
MD4-1000’s navigation system; the determination of absolute position information
via DGNSS. The principle of DGNSS will be introduced in the following section.

2.2. Differential Global Navigation Satellite Systems

With the upcoming of several emancipated Global Navigation Satellite Systems, such
as the US-American GPS, the Russian Global’naya Navigatsionnaya Sputnikovaya
Sistema (GLONASS) and the developing systems GALILEO (European Union), as
well as the BeiDou/Compass (China), it is important to clarify that GNSS speci-
fies not only the commonly used GPS. GNSS is used as a rather general term for
using any of these satellite systems or a combination of several, when determining
position.

Since the prevailing absolute GNSS position solutions are defective due to satellite
clock errors, atmospheric refraction of the signals and errors in the satellites’ orbits
propagation, it is crucial to compensate or at least to decrease these errors, for cal-
culating a more accurate position. Hence, relative positioning methods can be used
to reduce the effect of these errors by subtracting code or carrier phase measure-
ments of corresponding satellite signals, which have been detected simultaneously
on different receivers [Bauer, 2003; p. 221]. The following section will concentrate on
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the usage of code measurements by a technique widely known as Differential GNSS
or DGNSS.

2.2.1. Working Principle

The idea of DGNSS is the calculation and transmission of C/A code corrections by
a reference station to improve a user’s DGNSS receiver’s L1 pseudorange determi-
nation. By correcting pseudorange measurements in the user station’s positioning
algorithm, satellite clock errors are completely eliminated, while ionospheric run-
time errors, as well as negative impacts from defective satellite orbits are reduced.
Additionally, multipath and noise effects are minimized through L1 carrier phase
smoothing algorithms, both on the reference station’s side and the user station’s
side [Bauer, 2003; p. 223]. As a consequence, horizontal position accuracy can be
improved to approximately 0.4 m [Kettemann, 2003].

Figure 2.7.: DGNSS data flow between reference station and user station (following
[Bauer, 2003; p. 223]).

Figure 2.7 shows the data flow of the DGNSS working principle. In the following,
the requirements and functions of a reference station, as depicted in the purple box,
will be described. A reference station uses a GNSS receiver to track satellite signals
broadcasted by the GNSS satellites. The retrieved observations and ephemeries are
used to calculate a pseudorange based position of the reference station. This calcu-
lated position is then compared to the true position of the reference station. The
bias between these two positions is used to calculate corrections for the tracked pseu-
dorange solutions. These observation corrections then help to obtain more accurate
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coordinates when applied on the user station. Therefore, the observation corrections
are transformed to a standardized correction data exchange format and modulated
to a correction transmitter’s signal which is broadcasted to the user.

The user station, depicted in the green box, is acquiring the correction signal by a
correction receiver and extracts the correction data after its demodulation from the
signal. The observation corrections are subsequently fed to a navigation processor
and thereby combined with observations and ephemeries that have been tracked by
the user station’s GNSS receiver. The navigation processor then computes improved
position, velocity and time of the user station, by using corresponding pseudoranges
and corrections.

An important underlying assumption for this technique is that errors, which have
been determined on the reference station’s side, are equal to those of the user sta-
tion’s side, as long as the user’s position is situated no farther than a few hundred
kilometers from the reference station [Bauer, 2003; p. 224]. Otherwise, the calculated
corrections are not modeled in a sufficient accuracy and cannot be used to compen-
sate the true errors, which appear at the user’s location. The next subsection will
demonstrate, how this crucial assumption is often achieved by using correction signal
services that operate their own reference station networks.

2.2.2. Correction Signal Services

Correction Signal Services can be divided into two categories, depending on their
reference station network’s scale and their correction signal broadcasting technique.
Services, which use geostationary satellites to broadcast their correction signals over
wide areas are known as Satellite Based Augmentation Systems (SBAS). However,
services using terrestrial communication on local or regional level are called Ground
Based Augmentation Systems (GBAS) [Dodel and Häupler, 2009; p. 219].

Up until now, SBASs, such as the Wide Area Augmentation System (WAAS), the
European Geostationary Overlay Service (EGNOS) or the Multi-functional Satellite
Augmentation System (MSAS) function as augmentation for the US-American GPS.
As they are designed to provide code corrections for a wide service area, the expected
position accuracy is around 1.5 m [EGNOS, 2012]. The above mentioned and in
Section 2.1.2 quoted MD4-1000’s standard GNSS module achieves for instance its
best position accuracy of 2.0 m CEP by using EGNOS.

Figure 2.8 illustrates the concept of a SBAS like EGNOS. Such a system can be
roughly divided into two segments, the space and the ground segment. The first
part of the space segment consists of the GNSS satellites, which broadcast their
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Figure 2.8.: SBAS working principle and satellite based correction signal reception
(following [El-Rabbany, 2002; p. 97]).

signals to a network of spatial distributed reference stations on Earth. As every
reference station knows its own exact position, it is able to preprocess the observation
measurements, to compute signal corrections for the GNSS satellites, which can be
tracked in its region. The preprocessing follows the working principle mentioned
in Section 2.2.1. The computed information is forwarded to a master station via a
terrestrial link and subsequently analyzed and combined to determine a number of
correction parameters for each GNSS satellite, which are effective within the system
coverage area. In a next step, these parameters are uploaded to the geostationary
satellites, which form the second part of the space segment. The parameters are then
rebroadcasted to Earth, to provide user stations with DGNSS correction sets, which
are valid for their specific locations [El-Rabbany, 2002; p. 96].

In contrast to satellite based broadcasting, GBASs distribute their correction signal
via terrestrial techniques like e.g. radio (100 kHz - 300 MHz) or mobile communica-
tion networks (450, 900, 1800 MHz) [Zogg, 2011; p. 109]. Furthermore, the services’
coverage areas are smaller and their reference stations’ density is higher, compared
to SBAS services. As the distance between reference station and user station plays a
decisive role in the determination of correction parameters, the accuracy of GBASs
based on code corrections is increased by up to 300 % compared to SBASs, depending
on the GNSS receiver’s hardware (see i.e. [ASCOS, 2009]).
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GBASs are commonly operated at an area of country level or federal state level, like
for instance the German SAPOS (Satellitenpositionierungsdienst der deutschen Lan-
desvermessung) , ascos Satellite Positionig Services (SPS) or Radiobeacon DGPS,
which is operated by the German Maritime Authority (Wasser- und Schifffahrtsver-
waltung).

Figure 2.9.: GBAS working principle and ground based correction signal reception
(following [El-Rabbany, 2002; p. 97]).

As Figure 2.9 shows, the main difference in the working principle compared to
SBASs lies in the omission of geostationary satellites for broadcasting correction
signals. Here, terrestrial transmitter stations are used to provide user stations with
the needed corrections. All other parts of the data flow and data processing are
treated in analogy to the methodology described in Section 2.2.1 and the preceding
paragraphs.

After evaluating the basic concept of DGNSS, as well as the major differences in
broadcast and accuracy of correction signal services, the next section of this work
will focus on the theoretical background for the predominantly software related part
of this thesis and give an overview of the Sensor Web Enablement Initiative of the
Open Geospatial Consortium Inc..

14



2. Fundamentals

2.3. Sensor Web Enablement

Access to sensor data of the MD4-1000 Sensor Platform currently depends on specific
interfaces and software provided by Microdrones GmbH. These do not follow any
conventional standards. Hence, it is of interest to increase the MD4-1000’s potential
by the standardization of its sensor data to facilitate its integration into various
application sytems.

A multitude of such systems can be found in domains, such as environmental mo-
nitioring, public security, risk monitoring, disaster management and traffic man-
agement. As these systems strongly rely on sensors, access to and communication
with the sensors in a standardized way is required [Jirka et al., 2010]. The problem
of standardization is addressed by the OGC’s SWE initiative, which refers to web
accessible sensor networks and archived sensor data. The SWE builds the basis for
the Sensor Web as a coordinated observation infrastructure and facilitates discovery,
access and, where applicable, control of sensor networks and sensor data by using
open standard protocols and interfaces [Botts et al., 2008]. Therefore, the following
section will give a basic understanding of the SWE framework. Subsequently, Sensor
Bus and Sensor Platform Framework, as suitable means for the standardization and
integration of the MD4-1000’s Sensor Platform, are introduced.

2.3.1. SWE Architecture

The development of the SWE architecture has been driven by an OGC working group
and resulted in a SWE framework of open standars, for exploiting web-connected
sensor and sensor systems of all types. These standards enable the web-based dis-
covery of sensor systems, observations and observation processes. Furthermore, the
standards support exchange, and processing of sensor observations, and in addition,
the tasking of sensor systems [Botts et al., 2008].

The functionality of the framework includes access to sensor parameters and re-
trieval of observations and coverages [Botts et al., 2008]. It provides a common data
format for sensor data and a metadata model for the description of sensors and
the related measurement processes. In addition, the framework enables subscription
to and publishing of alerts, which are defined by certain criteria and, furthermore,
offers mechanisms for tasking and controlling sensors [Jirka et al., 2010]. These re-
quirements are realized by offering two sets of standards, the information model and
the service model (see Figure 2.10). The information model contains standardized
data models and formats for encoding sensor data, as well as metadata. According
to the information model, the service model provides several web service interfaces,
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which come along with the needed funtictionality of the Sensor Web [Jirka et al.,
2010]. The most important standards for understanding the approach of integrat-
ing the MD4-1000 Sensor Platform into the Sensor Web are briefly summarized in
the following paragraphs. Information about the unmentioned standards is given in
[Botts et al., 2008] and [OGC, 2012].

Figure 2.10.: Overview of the SWE framework with its information and service
model (following [Jirka et al., 2010]).

SWE Common

The underlying idea of SWE Common is to provide a general basis of data ele-
ments constisting of elementary data building blocks, which are re-used by all other
standards of the SWE framework [Jirka et al., 2010].

Observations & Measurements

The Observations & Measurements (O&M) standard is designed for the exchange of
sensor data. Therefore, it is a crucial element of the SWE framework, as it defines a
conceptual model and XML encoding for real-time, as well as archived observations
and measurements. An O&M document consists of one or severeal observations,
which are determined as action and result in values, describing phenomena. An
observation is modelled as a feature and binds a result to a feature of interest, upon
which the observation was made [OGC, 2007a].
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Sensor Model Language

The Sensor Model Language (SensorML) is the sensor metadata standard. Its main
function is to provide descriptions of sensors and sensor systems for inventory man-
agement and to provide sensor and process information in support of resource and
observation discovery. Moreover, it supports the processing and analysis of sensor
observations and the geolocation of observed values via the provision of perfor-
mance characteristics and gives explicit description of the observation process [OGC,
2007b].

Sensor Observation Service

The aim of the Sensor Observation Service (SOS) is to provide access to observations
from sensors and sensor systems in a standardized way, which is consistent for all
sensor systems, including remote, in-situ, fixed and mobile sensors [OGC, 2007c].
SOS is a standard web service interface for requesting, filtering, and retrieving ob-
servations and sensor system information and is therefore regarded as intermediate
piece between a client and the sensor data. There are two ways of retrieving the
sensor data; from an observation repository or a near real-time sensor channel, such
as the MD4-1000 [Botts et al., 2008]. Thus, the SOS is based on the aforementioned
O&M specification for modelling sensor observations and the SensorML specification
for modelling sensor and sensor systems [OGC, 2007c].

Sensor Alert Service and Sensor Event Service

The Sensor Alert Service (SAS) and Sensor Event Service (SES) are two different
approaches for defining alert criteria and subscription to alerts. As many sensors are
used for building monitoring systems, which dispatch alert notifications in the case
of predefined conditions, the SAS and SES offer the potential to filter sensor data by
these conditions [Jirka et al., 2010]. The difference in SAS and SES can be seen in
the SES’s ability to define alert criterias, for instance at the occurence of a critical
observation value after the occurence of a preceding non-critical value. This ability
is called complex event processing [Rieke, 2010].

2.3.2. Sensor Bus

In general, the integration of SWE services and sensor devices is still executed man-
ually, due to a conceptual gap between these two layers. As this leads to extensive
efforts in integrating new services and sensors, this approach is contrary to the aim
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of reaching interoperability. A solution for this problem is the Sensor Bus, which is
an intermediary layer for a seamless integration of sensor networks and Sensor Web
[Broering et al., 2010].

Figure 2.11.: Sensor Bus architecture with Service Adapter and Sensor Adapter in-
terfaces [Broering et al., 2010].

The Sensor Bus as intermediary layer is externally designed as a logical bus [Broering
et al., 2010] and shown in Figure 2.11. This logical bus is a topology that follows the
Message Bus pattern [Hohpe and Woolf, 2003; p. 139] and defines the communica-
tion between network components without regard to their phyisical interconnection.
It serves with a common communication infrastructure for network components to
publish messages to the bus or to subscribe to the bus for receiving messages, in a
push-based communication style. These components, SWE services and sensors, can
subscribe and publish through interfaces, for which pluggable adapters can be de-
veloped. These adapters guarantee the conversion from the service or sensor specific
communication protocol to the internal bus protocol [Broering et al., 2010].

Interactions between the sensor network layer, the Sensor Web and the intermediary
layer are realized through particular bus messages; the format of which is compact
to preserve bandwidth and system resources [Broering et al., 2010]. Table 2.2 lists
the Sensor Bus messages for the subscription of components.

To register a sensor at the Sensor Bus and publish its existence, the RegSen message
is sent. Additional parameters specify a unique sensor’s ID and a Uniform Resource
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Interaction Bus Message Protocol

Sensor Registration RegSen*<sensor id>*<sensor description URL>

Data Publication PubData*<sensor id>*<time tag>*<data>

Service Registration 1. RegServ*<service URL>
2. SubServ*<service URL>*<sensor A id>
3. SubServ*<service URL>*<sensor B id>
...

Table 2.2.: Selected Sensor Bus Message Protocols (following [Broering et al., 2010]
and [Rieke, 2010]).

Locator (URL), pointing to a SensorML document, which contains the sensor’s de-
scription.
After having subscribed to the Sensor Bus, the sensor adapter transmits the PubData

message via the Sensor Bus with information about the sensors’ observed data.
The subscription of a Sensor Web Service follows this principle in a sequential ap-
proach. In a first step, RegServ is called to publish the service’s URL. In a next
step, one or several SubServ messages are sent over the bus to subscribe the service
for one specific or several sensors [Broering et al., 2010].

Besides these messages for data acquisition, the Sensor Bus offers the possibility to
control sensors by Sensor Planning Services. As this function is not applied in the
integration of the MD4-1000 Sensor Platform, the corresponding messages are not
explained. Further information about these messages is given in [Broering et al.,
2010].

2.3.3. Sensor Platform Framework

After having established the Sensor Bus technology, the Sensor Platform Framework2

(SPF) will now be introduced. The SPF offers two basic functions. It is able to syn-
chronize registered sensor data streams, as for instance the MD4-1000’s navigation
data stream with additional data streams of mounted sensor devices. Moreover, the
resulting data is published on the Web and made accessible in an interoperable way,
using the Sensor Bus technology [Rieke et al., 2011].

2Sensor Platform Framework, published at 52 ◦North Initiative for Geospatial Open Source Soft-
ware GmbH (http://52north.org/communities/sensorweb/incubation/ifgicopter/
spf/index.html)
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The SPF features both, reusable design along with a reusable implementation and a
high coherence between the framework classes [Rieke et al., 2011]. Its key character-
istics are extension points, which serve as interfaces for data source Input-Plugins
and output component Output-Plugins, which can be written in a flexible manner.
An overview of the framework’s architecture is given in Figure 2.12.

Figure 2.12.: Sensor Platform Framework model with extension points [Rieke et al.,
2011].

In a first step, the sensors need to be connected to the framework. This task is
carried out by a data source Input-Plugin. This Input-Plugin establishes connection
to the framework and processes the incoming data to give the framework access to
the observations and their metadata encoded in SensorML. Moreover, the Input-
Plugin contains a XML document, which specifies the plugin-specific behaviour of
the framework; especially the generation of output data based on a periodic time
interval or on the availability of a specific phenomenon [Rieke, 2010].

The framework’s core is designed to manage incoming data of registered data sources,
by collecting data as soon as it is available. This data is added to the frameworks
InputPluginCollector class, which gatheres all incoming data. The InputPluginCollector

class interpolates the data according to the aforementioned plugin-specific behaviour.
By calling the doOutput method, the processed data is forwarded to the Frame-

workEngine class for consequent data output by a suitable Output-Plugin [Rieke,
2010].

The output plugin interface is also designed as an extension point to the framework,
to support multiple output formats [Rieke, 2010]. An implemented Output-Plugin
retrieves the processed data from the FrameworkEngine class and converts it to a
specific format. As this work concentrates on the integration of the MD4-1000’s
navigation data into the Sensor Web, the output format needs to set focus on the
SWE standards, which have been introduced in Section 2.3.1.

20



3. Requirement Analysis

3. Requirement Analysis

Regarding the aim of improving the current standard absolute positioning solution,
this chapter defines the essential demands, which are made on an improved DGNSS
positioning system to reach a valuable accuracy and a best possible integration into
the MD4-1000 Sensor Platform’s navigation system. Moreover, the requirements of
a suitable integration of the sensor platform’s navigation data into the Sensor Web
in light of a subsequent use by Sensor Web Services are exposed.

3.1. DGNSS Positioning System Requirements

The following sections will demonstrate the predominantly hardware related require-
ments of an improved DGNSS positioning system, as well as taking into considera-
tion the demands on the interface between DGNSS receiver and the MD4-1000’s NC.
This information forms the basis for the selection and combination of the positioning
system’s components, which will be shown in detail in Section 4.1.

3.1.1. Improvement of Absolute Positioning

The main objective of the advanced positioning system is to improve its absolute
position solution accuracy. A best possible accuracy of approximately 0.4 m, as
mentioned in Section 2.2.1 and based on the introduced GBAS techniques in Section
2.2.2, is aspired. Ideally, the system should make use of all available fully, operational
GNSS (GPS and GLONASS) as of January 2012 to improve the measurement’s Di-
lution of Precision (DOP) values by increasing the amount of visible GNSS satellites
[Tamazin, 2011]. This way, negative impacts on positioning are reduced in locations
where several GNSS satellites cannot be taken into account, due to shadowing effects
that are caused by obstacles.

Furthermore, the positioning system should be capable of automatically switching
to less accurate DGNSS support by using adequate SBASs in the case that a suitable
GBAS is not available in the area of interest.
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3.1.2. Extensibility Through More Sophisticated Technologies

Besides the demanded implementation of DGNSS techniques, the positioning sys-
tem should be conceptualized in a modular way. As the development of improved
hardware and software is rapidly progressing, it is important to avoid out of the box
systems to offer the possibility of exchanging singular components by others, which
are using more sophisticated technologies.

This requirement also aims at the extensibility of the positioning system, by using
more accurate relative positioning support known as Real-Time Kinematic GNSS
(RTK-GNSS) or Precise DGNSS (PDGNSS). The underlying architecture of the
mentioned support solution resemble those of a ground based DGNSS. The difference
lies in the more superior and more expensive receiver’s hardware and software in
combination with more efficient antennas. These receivers are capable of processing
C/A code and carrier phase observations on both L1 and L2 signals and adapted
correction signal sets. As a consequence, atmospheric corrections are eliminated more
precisely and signal runtimes are determined in a higher degree of accuracy, which
leads to more improved positioning at cm-level [Bauer, 2003; p. 224].

3.1.3. Real-Time Accuracy Estimation for Safety in Flight Reasons

Another important aspect of the positioning system is the ability of estimating a reli-
able position accuracy in real-time. Since the the MD4-1000 is an aerial vehicle used
for monitoring and sensing in close range of objects of interest, it is essential to avoid
crashes and consequential damages to the MUAV and the sensed objects. Hence, the
MD4-1000’s navigation system is able to alter its interior positioning routines. In
cases that the GNSS position exceeds a predefined accuracy threshold or completely
looses position, the navigation system switches to navigation filters, which are based
on the remaining navigation sensors’ information [Wendel, 2007; p. 287].

3.1.4. Low Weight and Low Power Consumption Components

Taking into account, that the flight time and the payload capability of a MUAV
heavily depend on the vehicle’s mass and its battery power (see 2.1), it is evident
that the new electronic components should follow the principle of minimization.
Therefore, the power consumption and moreover, the dimension and weight of the
components should be kept low to have as less impact as possible on the payload
capability and flight time.
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3.1.5. Integration into MD4-1000 Navigation System

The integration into the MUAV demands some MD4-1000 specific requirements
the positioning system has to function with. Among these requirements, is on the
one hand need for an appropriate interface between the positioning system and
the MD4-1000 NC. As the NC offers a serial interface for data connectivity, the
positioning system has to serve with a suitable communication port to forward its
data to the NC. On the other hand, the system’s data output rate has to work
at an adequate frequency of 4 Hz, in order to be in coordination with the MD4-
1000’s internal navigation filters. The NC’s firmware, moreover, necessitates a certain
positioning information, the positioning system has to provide. This information and
the predefined internal data structure this information has to be applied to, is shown
in Listing 3.1.

Listing 3.1: Internal navigation data structure of a MD4-1000, containing GNSS
information values for time, position, velocity, accuracy and status.

1 struct navsol_msg
2 {
3 U32 itow; // [ms] time of week
4 S32 frac; // [ns] fractional remainder of rounded itow
5 S16 week; // GPS week
6 U08 gpsfix; // GPS fix type (0=none, 2=2D, 3=3D)
7 U08 flags; // Bit3: itow valid, Bit2: week valid
8 // Bit1: differential used, Bit0: fix valid
9 S32 ecef_x; // [cm] ECEF x coordinate

10 S32 ecef_y; // [cm] ECEF y coordinate
11 S32 ecef_z; // [cm] ECEF z coordinate
12 U32 pacc; // [cm] 3D position accuracy estimation
13 S32 ecef_vx; // [cm/s] ECEF x velocity
14 S32 ecef_vy; // [cm/s] ECEF y velocity
15 S32 ecef_vz; // [cm/s] ECEF z velocity
16 U32 sacc; // [cm/s] 3D speed accuracy estimation
17 U16 pdop; // current PDOP
18 U08 res1; // reserved
19 U08 num_sv; // number of visible sv
20 U32 res2; // reserved
21 };

3.2. MD4-1000 Sensor Data Integration Requirements

Besides from focusing on the requirements of an improved positioning system, this
thesis also addresses the integration of the MD4-1000’s sensor data in the Sensor
Web. The Sensor Web as a coordinated observation infrastructure builds on service-
oriented interfaces, to provide observation data and metadata of sensor systems.
Section 2.3.1 showed that these interfaces require sensor information and observation

23



3. Requirement Analysis

data in a standardized way. Consequently, these standards must be considered for
the conception of a suitable MD4-1000 sensor data architecture. This consideration
resulted in requirements, which have been taken into account in the design of the
architecture and will be described in the following sections.

3.2.1. Near Real-Time Data Downlink

The O&M standard (see Section 2.3.1) allows the exchange of real-time and archived
observations. As the MD4-1000 is a mobile aerial sensor platform, the demand of
real-time data access cannot be satisfied by convential wired networks. Therefore,
the telemetry data downlink, introduced in Section 2.1.6, has to be taken into con-
sideration. It offers a near real-time access to the sensor platform’s data via a named
pipe server. As a consequence, the MD4-1000’s sensor data architecture has to serve
with a software, which is able to retrieve the telemetry data stream via the named
pipe server.

3.2.2. Standardized Sensor Data

Section 2.3 already addressed the problem of sensor data reusability, which occurs
with manufacturer-specific interfaces and software. As the Sensor Bus architecture is
based on the SWE initiative and its involved standard definitions, it is indispensable
to establish a mechanism to encode the MD4-1000’s sensor data in conformance with
these definitions.

3.2.3. Sensor Data Access

After having considered retrieval and standardization of the MD4-1000’s sensor data,
access to this data needs to be established. Therefore, the sensor data architecture
has to provide a possibility to register the MD4-1000 Sensor Platform and to publish
its sensor data via the Sensor Web. As a consequence, SWSs of any kind are enabled
to implement the provided sensor data in application systems of various domains.

3.3. Objectives

As a result of the aformentioned requirements, the objectives of this thesis are the
improvement of the MD4-1000’s absolute positioning accuracy and the provision of
the enhanced sensor platform’s navigation data for Sensor Web Services.
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The improvement in positioning accuracy is based on a DGNSS approach. The
standard positioning system’s hardware will be exchanged by a more efficient one,
which will follow MUAV-specific requirements, such as small size, low weight and
low power consumption. The hardware will be able to provide real-time navigation
accuracy estimations for safety in flight reasons and the integration into the MD4-
1000 Sensor Platform will be guaranteed by modifying the NC’s firmware.

Although this thesis focuses on improving the positioning accuracy, the MD4-1000’s
navigation data will be retrieved, standardized and made accessible in near real-time.
Therefore, a software architecture will be developed, which decodes the MD4-1000’s
telemetry data stream, processes the sensor data in accordance to SWE standards
and enables access to the sensor platform’s information and observations by SWSs.
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4. Concepts and Strategies

This chapter describes the approach, which has been made to increase the MD4-
1000’s absolute positioning accuracy and points out the underlying concept of the
developed architecture. Besides, it gives an overview of the conceptual firmware
modification to integrate the architecture into the existing system. The second part
explains the strategies to relay the MUAV’s positioning data to the Sensor Web and
the possibility to synchronize this data with additional sensor data sources, by using
the Sensor Platform Framework.

4.1. DGNSS Positioning System Architecture

This first section is concerned with the complete conceptual architecture of the im-
proved positioning system. As a modular concept for extensibility is aspired (see
Section 3.1.2), individual hardware components for gathering more accurate posi-
tioning information and for the acquisition of correction data are listed. The section
further outlines the communication interface between the DGNSS positioning sys-
tem and the MD4-1000’s NC and a way to realize the data transfer.

4.1.1. DGNSS Receiver and Antenna

As a first step towards an improved positioning system, the existing GNSS hard-
ware components have to be replaced by more effective ones, guaranteeing a better
positioning solution. Therefore, the standard GNSS receiver, which has been intro-
duced with its most significant features in Section 2.1.2 will be exchanged by an
advanced DGNSS receiver, using GPS and GLONASS as it is demanded in Section
3.1.1. In addition, the receiver needs to be able to acquire and process correction
signals provided by both, SBASs and GBASs to guarantee advanced positioning by
switching to SBAS support in areas where GBASs cannot be retrieved. In cases that
GBASs are availlable, the receiver also needs to offer a suitable serial interface to
connect a radio modem that operates communication to ground based Correction
Signal Services and reception of their provided correction signals.
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Besides, the passive GPS antenna used at present, has to be exchanged by an active
one with a higher gain and the possibility to receive both GPS and GLONASS
signals.

4.1.2. Radio Modem and Communication With Correction Signal
Service

After having established the needed functionality of a new receiver and antenna, it is
obvious, that this new hardware needs to be able to retrieve aforementioned SBAS
correction signals, which are broadcasted by geostationary satellites (see Section
2.2.2) to process signal corrections of lower accuracy.

In the case of using signal corrections of higher accuracy, an additional mean of
communication between the receiver and an appropriate ground based Correction
Signal Service is required. This mean forms a radio modem, capable of sending
position information to a Correction Signal Service and also of receiving location-
dependent correction data to forward it in real-time to the receiver for subsequent
processing.

The underlying message format for sending position information is the National Ma-
rine Electronics Association 0183 Interface Standard (NMEA 0183) data transmis-
sion protocol [NMEA, 2002]. Listing 4.1 shows the required $GPGGA message, which
contains the receiver’s position information. The standard for receiving DGNSS sig-
nal corrections is defined by the Radio Technical Commission for Maritime Services
(RTCM). As the radio modem is intended to establish connections via the General
Packet Radio Service (GPRS), the standard’s version that is going to be used is
RTCM 10410.0 for Networked Transport of RTCM via Internet Protocol (Ntrip),
which is more complex and can be seen in detail in [RTCM, 2004].

Listing 4.1: Example of a NMEA 0183 $GPGGA message.
1 $GPGGA,114217.43,5107.8321,N,00935.4613,E,1,09,1.8,63.2,M,24.7,M,,*6E
2 | | | | | | | |
3 UTC time Latitude Longitude | HDOP| | Checksum
4 HHMMSS.SS DDMM.MMMM DDDMM.MMMM SV Height Geoid height

4.1.3. MD4-1000 Firmware Integration

Having introduced an improved DGNSS receiver, antenna and a suitable radio mo-
dem, which together establish the wanted modular DGNSS hardware setup, the next
step is the integration of the positioning information, gathered by this setup, into
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the MD4-1000’s firmware. Therefore, the receiver has to be connected to the MD4-
1000’s NC via a serial interface to push the processed data to the NC, where it is
received and decoded. A modification of the NC’s firmware has to be carried out, by
implementing a parsing routine in the C programming language. This routine must
be able to handle the incoming data stream and to split it into its individual infor-
mation sets. Consequently, the information sets have to be parsed into the intended
data fields which are listed in the NC’s navsol msg (see Listing 3.1).

At this point, the improved DGNSS setup is complete and is summarized in the
following section.

4.1.4. DGNSS Positioning System Overview

Figure 4.1 gives an overview of the data flow of the DGNSS positioning system,
which follows the explanations in Section 2.2.1. After the DGNSS receiver’s first po-
sition fix, it forwards the position information as NMEA 0183 $GPGGA message via
its serial interface to a connected radio modem. Having received this information,
the radio modem builds up a GPRS connection to a local service provider, starts to
register to the Correction Signal Service’s system and hands over the $GPGGA string.
There, the position information is extracted and signal corrections are determined
for that specific location. In a consequent step, the processed signal corrections are
formatted, according to RTCM 10410.0 and handed back to the radio modem. After-
wards, this information is pushed to the DGNSS receiver navigation processor and
used to compute more accurate DGNSS positioning solutions. As the signal correc-
tions lose their validity by the change of the satellites’ constellation and, therefore,
with proceeding in time, the described cycle is repeated every 5 seconds to have
guaranteed up to date signal corrections for the current location.

Figure 4.1.: Position and correction data flow of the DGNSS positioning system.
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In a last step, the improved positioning solutions, which have been calculated, are
forwarded by the receiver to the MD4-1000’s NC via a second serial interface with
an update rate of 4 Hz, as demanded in Section 3.1.5. There, they are decoded
and parsed to the data fields of the navsol msg and subsequently used for the
computation of the MD4-1000’s navigation solution.

Figure 4.2.: Overview of the improved DGNSS positioning system, embedded in the
MD4-1000 Sensor Platform.

After having outlined the data flow, the complete architectural draft is summarized
in the following. As Figure 4.2 shows, the improved system is embedded into the
MD4-1000 Sensor Platform, which is marked as the all-embracing blue box. The
figure follows the explanations of how to acquire spatial position and attitude by
computing a navigation solution from integrated navigation sensors, which are given
in Section 2.1.4. The green box on the left hand side represents the improved modular
DGNSS positioning system consisting of the active DGNSS antenna, the DGNSS
receiver and the radio modem for data communication with the Correction Signal
Service, which is located on the lower side of the figure and not part of the MUAV.
The NC including the magnetometer, barometer, INS and the microcontroller, on
which the navigation filters are run is shown in the white box on the right hand
side. The data communication is visualized through the linking arrows and follows
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both, the just mentioned data flow of the improved DGNSS positioning system (see
Figure 4.1) and the navigation sensor’s data flow from Figure 2.4.

In summary, this and the preceding sections established the basic components of
the improved modular DGNSS positioning system, the connection to a Correction
Signal Service and the integration into the existing MD4-1000 Navigation System.
The underlying hardware and its requirements, the data flow of the components, as
well as the modification of the existing NC firmware have been pointed out and the
necessary steps for an implementation, which is described in Section 5.1 have been
determined.

4.2. Data Provision for Sensor Web Services

This section elucidates the approach of receiving the MD4-1000’s navigation data,
encoding the data according to SWE standards, and making the data accessible
by SWSs. Thus, it introduces the complete architectural draft of the MD4-1000
navigation sensor data architecture, regarding the aforementioned requirements of
Section 3.2. It describes acquisition and decoding of the telemetry data stream and
subsequent integration in the SPF. There, the data is preprocessed according to
the SWE standards and is forwarded to the Sensor Web via a suitable Sensor Bus
Output-Plugin.

4.2.1. Telemetry Data Decoding

Regarding the requirement of Section 3.2.1, a first step towards offering MD4-1000
navigation sensor data for SWSs is real-time data acquisition. Section 2.1.6 already
showed that the MD4-1000 is equipped with a telemetry data signal that can be
received by a base receiver station. The vendor-specific mdCockpit application pro-
gram, which is run on a connected notebook, decodes this signal and implements
a named pipe server for querying the transferred data by external programs. The
pipe server is based on the Windows pipe file system and can be accessed by using
normal I/O functions of the Windows operating system [MD, 2011a].

Therefore, a parsing routine will be developed, which is able to detect and access the
implemented pipe server file. After having sent a specific DOWNLINK command, the
pipe server will respond with a string containing the current binary data from the
mdCockpit Downlink Decoder of the adressed MUAV. As this data is hex-encoded
as ASCII-text3 with a length of 256 bytes, the data string is consequently decoded

3ASCII is the American Standard Code for Information Interchange
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and parsed to acquire time, position, velocity, attitude and accuracy information.
Detailed information about the acquired navigation sensor values is apparent from
Table 4.1 [MD, 2011a].

Category Sensor information
Time Operating time code

Flight time code
GPS time

Position GNSS ECEF X
GNSS ECEF Y
GNSS ECEF Z
LLA Latitude
LLA Longitude
LLA Altitude
Relative Altitude

Velocity GNSS Speed X
GNSS Speed Y
GNSS Speed Z

Attitude Roll
Pitch
Yaw

Accuracy Position accuracy
Velocity accuracy

RC commands Image trigger

Table 4.1.: MD4-1000 navigation sensor data values, retrieved from the sensor data
stream.

4.2.2. Sensor Platform Integration into Sensor Platform Framework

The developed parsing routine will be implemented in a MD4-1000 specific SPF
Input-Plugin to guarantee integration of the gathered sensor data. Section 2.3.3 de-
scribed the possibilities of the SPF, which is capable of acquiring different sensor
data streams, interpolating these to combined sensor observations, and forwarding
the combined data via suitable Output-Plugins in a SWE conformable way. This
thesis only concentrates on the integration of one navigation sensor data stream.
However, the developed Input-Plugin is extendable by decoding and parsing addi-
tional sensor data streams, i.e. the MD4-1000’s navigation sensor information and
sensor observations from a mounted camera system.
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The Input-Plugin is based on an XML document, which specifies the behavior of data
output according to the availabilty of predefined observations. In addition, the doc-
ument determines the output of phenomena. Listing 4.2 shows such an XML docu-
ment. It establishes that upon availabilty (<spf:AvailabilityBehaviour>) of position in-
formation (<spf:outputProperties>), distinct navigation sensor data (<spf:mandatory

Properties>) will be output along with the position. In this case, the navigation
sensor data’s output (<spf:output>) is limited to Position, GPS Time, GNSS Position

Accuracy, Attitude Roll, Attitude Pitch, Attitude Yaw and Relative Altitude.

Listing 4.2: XML document for the definition of the MD4-1000 Input-Plugin’s out-
put behaviour.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <spf:plugin xmlns:spf="http://ifgi.uni-muenster.de/˜m_riek02/spf/0.1"
3 name="urn:ifgi:id:microdrones">
4 <spf:output>
5 <spf:AvailabilityBehaviour>
6 <spf:outputProperties>
7 <spf:property>Position</spf:property>
8 </spf:outputProperties>
9 </spf:AvailabilityBehaviour>

10 <spf:mandatoryProperties>
11 <spf:property>GPS Time</spf:property>
12 <spf:property>GNSS Position Accuracy</spf:property>
13 <spf:property>Attitude Roll</spf:property>
14 <spf:property>Attitude Pitch</spf:property>
15 <spf:property>Attitude Yaw</spf:property>
16 <spf:property>Relative Altitude</spf:property>
17 </spf:mandatoryProperties>
18 </spf:output>
19 <SensorML />
20 </spf:plugin>

Another important section of the XML document is the SensorML description
(<SensorML>), which defines the metadata of sensors and phenomena that shall
be processed by the SPF. Because of the document’s size, Listing 4.3 shows a snip-
pet of the description, which is part of Listing 4.2. It establishes a list of inputs
(<InputList>) containing discrete input elements (<input>), which reference the afore-
mentioned properties (<spf:property>) by a name attribute. Moreover, each input
element is specified by a data type, a definition identifier Uniform Resource Name
(URN) and an according unit of measurement (<swe:uom>). Using this SensorML
description, the SPF processes every input element according to the specifications,
which have been chosen in Listing 4.2.

Listing 4.3: SensorML definition for specifying the MD4-1000 Input-Plugin’s
phenomena.

1 <inputs>
2 <InputList>
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3 <input name="Position">
4 <swe:Position referenceFrame="urn:ogc:def:crs:EPSG::4326">
5 <swe:location>
6 <swe:Vector>
7 <swe:coordinate name="LLA Position Latitude">
8 <swe:Quantity>
9 <swe:uom code="deg" />

10 </swe:Quantity>
11 </swe:coordinate>
12 <swe:coordinate name="LLA Position Longitude">
13 <swe:Quantity>
14 <swe:uom code="deg" />
15 </swe:Quantity>
16 </swe:coordinate>
17 <swe:coordinate name="LLA Position Altitude">
18 <swe:Quantity>
19 <swe:uom code="m" />
20 </swe:Quantity>
21 </swe:coordinate>
22 </swe:Vector>
23 </swe:location>
24 </swe:Position>
25 </input>
26 <input name="GPS Time">
27 <swe:Quantity definition="urn:ogc:def:dataType:OGC:1.1:time">
28 <swe:uom code="ms" />
29 </swe:Quantity>
30 </input>
31 <input name="GNSS Position Accuracy">
32 <swe:Quantity definition="urn:ogc:def:dataType:OGC:1.1:measure">
33 <swe:uom code="m" />
34 </swe:Quantity>
35 </input>
36 <input name="Attitude Roll">
37 <swe:Quantity definition="urn:ogc:def:dataType:OGC:1.1:measure">
38 <swe:uom code="deg" />
39 </swe:Quantity>
40 </input>
41 <input name="Attitude Pitch">
42 <swe:Quantity definition="urn:ogc:def:dataType:OGC:1.1:measure">
43 <swe:uom code="deg" />
44 </swe:Quantity>
45 </input>
46 <input name="Attitude Yaw">
47 <swe:Quantity definition="urn:ogc:def:dataType:OGC:1.1:measure">
48 <swe:uom code="deg" />
49 </swe:Quantity>
50 </input>
51 <input name="Relative Altitude">
52 <swe:Quantity definition="urn:ogc:def:dataType:OGC:1.1:measure">
53 <swe:uom code="m" />
54 </swe:Quantity>
55 </input>
56 </InputList>
57 </inputs>
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The parsing routine in combination with the XML and SensorML definitions form
the basis of the implemented MD4-1000 specific Input-Plugin, which will be intro-
duced in Section 5.2. As SensorML ensures an encoding for the output of navigation
sensor data following the standards of SWE, as well as the document’s reusability
by several SWSs, the requirements of Section 3.2.2 have been taken into considera-
tion.

4.2.3. Sensor Platform Framework and Sensor Bus Data Connection

Having implemented an appropriate Input-Plugin, the SPF automatically processes
the sensor data in the specified way. Therefore, the last step in designing a MD4-
1000 navigation sensor data architecture is to ensure valuable sensor data output
for subsequent use in the Sensor Web, as demanded in Section 3.2.3.

Besides the input plugin interface, the SPF provides an output plugin interface (see
Section 2.3.3). This output plugin interface receives the processed sensor data and
its according SensorML definitions from the SPF core. As a consequence, a MD4-
1000 specific Output-Plugin could be implemented, which is able to publish sensor
data to a certain SWS. As the objective of this thesis is to offer the sensor plat-
form’s navigation data to a variety of SWSs, the sensor data architecture follows
the approach of the Sensor Bus as intermediary layer between the MD4-1000 Sensor
Platform and the Sensor Web (see Section 2.3.2). Thus, the design of the naviga-
tion sensor data architecture considers the use of a Sensor Bus Output-Plugin for
encoding all information to Sensor Bus messages. Subsequently, the Output-Plugin
registers the MD4-1000 Sensor Platform and publishes its sensor information to the
Sensor Bus.

However, the development of this plugin is not part of this thesis. Therefore, the sen-
sor data architecture adapts an already implemented Sensor Bus Output-Plugin4.

4.2.4. MD4-1000 Navigation Sensor Data Architecture

At this point, the sensor data architecture can be considered as complete. Figure
4.3 establishes an overview of the MD4-1000’s navigation sensor data architecture’s
workflow. This figure is quite revealing in several ways. First of all, the MD4-1000
Sensor Platform, situated on the upper left side, transmits its navigation sensor
data to a base receiver station, as depicted in the white box. Second, the mdCockpit

4Sensor Bus Output-Plugin, published at 52 ◦North Initiative for Geospatial Open Source Software
GmbH (http://52north.org/communities/sensorweb/incubation/ifgicopter/spf/
index.html)
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downlink decoder application program receives the data stream and implements a
named pipe server. Third, the MD4-1000 Input-Plugin as part of the SPF, indicated
by three blue boxes, addresses the named pipe server to retrieve the data stream.
Subsequently, the plugin decodes and parses the data stream’s content and forwards
it with detailed XML and SensorML descriptions to the SPF’s core. Fourth, the core
processes the sensor data according to these definitions and provides the data for a
Sensor Bus Output-Plugin. Fifth, The Sensor Bus Output-Plugin formats the data
to Sensor Bus messages and registers the MD4-1000 at the Sensor Bus. Sixth, any
SWS, depicted in the green box on the lower left side, can register to the Sensor Bus
by a suitable Service Adapter and retrieve the navigation sensor data for subsequent
use.

Figure 4.3.: Overview of the MD4-1000 navigation sensor data architecture.
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5. Implementation

After having described the concepts and strategies in Chapter 4, this chapter in-
troduces the implementation of the prototypical DGNSS positioning system and its
integration into the MD4-1000 Sensor Platform. Moreover, the developed Sensor
Platform Framework Input-Plugin for the reception and decryption of the sensor
data is explained.

5.1. Prototypical DGNSS Positioning System

The prototypical DGNSS positioning system is implemented according to the con-
cept and architectural draft, which has been outlined previously (see Section 4.1).
Thereby, the choice of the hardware components and of the correction signal acqui-
sition method, as well as the firmware related modifications are made with regard to
the requirements, which are listed in Section 3.1. These individual parts of the com-
plete prototype and their discrete configurations are described in the following.

5.1.1. Hardware Components

The prototype consists of three major hardware components that form its core and
offer the improved DGNSS functionality. The first component, a more sophisticated
active DGNSS antenna is used instead of the standard antenna listed in Section
2.1.2. The new antenna of the type Antcom G5Ant-1AT1 (see Figure 5.1) serves the
purpose of receiving L1 satellite signals from both GPS and GLONASS, which has
been established in the architectural concept of Section 4.1.1.

As Table 5.1 shows, the Antcom G5Ant-1AT1 is conform to the requirements of low
weight with a mass of 105 g and low power consumption with a mean power of 0.120
W at an input voltage of 3.3 VDC (see Section 3.1.4). Besides, it is well suited for
MUAVs because of its minor dimensions of 53 x 53 x 21 mm, compared to other
standard active DGNSS antennas, which are of greater size [Antcom, 2009].
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Figure 5.1.: Antcom G5Ant-1AT1 DGNSS antenna and connection cable.

Technical Specifications
GNSS support GPS (L1/L2/L5) + GLONASS (L1/L2)
Dimensions 53 x 53 x 21 mm
Weight 105 g
Input voltage +2.5 to +24.0 VDC
Power consumption 0.120 W @ 3.3 VDC

Table 5.1.: Selected technical specifications of the Antcom G5Ant-1AT1 DGNSS an-
tenna (following [Antcom, 2009]).

Moreover, the Antcom G5Ant-1AT1 is already capable of using L2 satellite signals
that are needed for a future RTK-GNSS solution. Thus, the antenna already fulfills
the goal of the demanded option for extensibility exacted in Section 3.1.2.

The second component of the prototype is an improved DGNSS receiver, which
features combined L1 GPS and GLONASS code and carrier phase tracking for in-
creased positioning accuracy and availability. The used NovAtel OEMStar receiver
offers additional support of both, SBASs and GBASs for DGNSS positioning. It is
capable of tracking eight GPS, four GLONASS and two SBAS satellites at the same
time and works with an automatic routine to switch from SBAS to GBAS support
as soon as ground based signal corrections are received [NovAtel, 2010b]. It therefore
complies with the demands of improving absolute positioning, mentioned in Section
3.1.1. Figure 5.2 shows the receiver board with its external antenna input, two serial
COM ports for the connection of a suitable radio modem and the MD4-1000’s NC,
which is needed to meet the requirements of Section 3.1.5.

The most important technical specifications of the NovAtel OEMStar receiver are
listed in Table 5.2. It is able to process satellite signals with a horizontal position
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Figure 5.2.: NovAtel OEMStar DGNSS receiver and realization of communication.

Technical Specifications
Channel configuration 8 GPS L1 + 4 GLO L1 + 2 SBAS
Horizontal position accuracy SBAS 0.7 m (RMS)
Horizontal position accuracy DGPS 0.5 m (RMS)
Dimensions 46 x 71 x 13 mm
Weight 18 g
Input voltage +3.3 to +5.25 VDC
Power consumption 0.360 W
Communication ports 2 LV-TTL serial ports capable of 300 to

230400 bps

Table 5.2.: Selected technical specifications of the Novatel OEMStar DGNSS receiver
(following [NovAtel, 2010b]).

accuracy of 0.7 m RMS5 in SBAS and 0.5 m RMS in GBAS mode. The achieved
position accuracy information in GBAS mode is evaluated later on in Section 6.1.3.
Besides, the receiver features real-time position and, furthermore, speed accuracy
estimations to meet the safety in flight information demanded in Section 3.1.3. These
estimations are acquired through appropriate information logs, which are retrieved
by the receiver and introduced in Section 5.1.4. Regarding its low weight of 18 g
and its low power consumption of 0.360 W, the requirements of Section 3.1.4 are
satisfied. The power supply is established by using the MD4-1000’s internal battery
and the COM1 NC connection.

5RMS = Root Mean Square: The square root of the average of the squared horizontal position
errors, containing 65 % of the fixes. [NovAtel, 2003]
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The third component forms an appropriate radio modem for ground based correc-
tion signal acquisition. As the radio modem needs to register to a Correction Signal
Service, to forward a $GPGGA message and subsequently to retrieve RTCM correc-
tions as described in Section 4.1.2, the prototypical implementation of the DGNSS
system makes use of the Allsat come2ascos radio modem, which has been especially
developed for the communication between DGNSS receivers and Correction Signal
Services. Figure 5.3 shows that the modem is equipped with a GSM/GPRS antenna
input and a SIM card to subscribe to a local telephone service provider in order to
be able to use a GPRS connection for the correction signal transport. The marked
serial port is used for the data flow between radio modem and DGNSS receiver.

Figure 5.3.: Allsat come2ascos radio modem and realization of communication.

Technical Specifications
Dimensions 100 x 60 x 30 mm, reduced to 90 x 55 x 10 mm
Weight 220 g, reduced to 56 g
Input voltage +8.0 to +13.5 VDC
Power consumption 3.6 W @ 12 VDC GPRS/Ntrip
Communication format RTCM, CMR and other
Communication port 1 RS232 capable of 2400 to 57600 bauds
GSM/GPRS Modem FINMEK TELIT S.p.A.
GSM/GPRS Band 900/1800/1900 MHz

Table 5.3.: Selected technical specifications of the Allsat come2ascos radio modem
(following [Allsat, 2008]).
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In contrast to the OEMStar, the come2ascos needs an external power supply be-
cause of a higher input voltage of 8.0 to 13.5 VDC (see Table 5.3) and a relatively
high power consumption of 3.6 W at an input voltage of 12 VDC. For this reason, it
is connected to the MD4-1000’s telemetry link’s power line, which provides the de-
manded input voltage. Besides that, a voltage transformer is implemented between
the come2ascos and the OEMStar to enable data communication via the serial inter-
face by regulating the different voltage levels. As the come2ascos is delivered in an
enclosure, this enclosure is removed from the board to reduce the dimensions to 90
x 55 x 10 mm and its weight from 220 g to 75 g, in order to meet the requirements
in Section 3.1.4.

Figure 5.4.: Overview of the prototypical DGNSS positioning system’s components
and connection.

After having introduced the three core components, Figure 5.4 gives an overview
of the complete prototypical DGNSS hardware setup with all its components. It
consists of the DGNSS antenna and the DGNSS receiver, which are interconnected
by the black cable located in the upper right corner. This cable offers satellite sig-
nal transmission and the power supply of the antenna, which is obtained from the
receiver. The receiver offers two COM ports. COM1 is connected to a bundle of
wires with a special plug to connect to the MD4-1000’s NC for data transfer and
power supply of the receiver. COM2 is connected to the radio modem for commu-
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nication of position and signal correction sets by interposing a voltage transformer.
The radio modem needs an appropriate GSM/GPRS antenna for network connec-
tion and an extra power supply to the MD4-1000’s telemetry link’s power line. All
these components form the entire setup with an absolute weight of approximately
300 g.

5.1.2. Hardware Configuration

This Section addresses the firmware related configuration of two of the core com-
ponents, the DGNSS receiver and the radio modem. Both components have been
configured by using a serial interface connection and a conventional terminal pro-
gram.

Listing 5.1: NovAtel OEMStar receiver configuration parameters for positioning and
communication.

1 SELECTCHANCONFIG 5
2 SBASCONTROL ENABLE AUTO 0 NONE
3 COM COM1 57600
4 COM COM2 19200
5 INTERFACEMODE COM2 RTCMV3 NOVATEL OFF
6 LOG COM1 PSRDOPA ONTIME 0.25
7 LOG COM1 BESTXYZA ONTIME 0.25
8 LOG COM2 GPGGA ONTIME 5

Listing 5.1 shows the configuration parameters, which have been chosen for adjusting
the OEMStar DGNSS receiver. Besides the SELECTCHANCONFIG 5 command, which
sets the used channels for satellite tracking to eight GPS, four GLONASS and two
SBAS satellites and the automatically enabling of SBAS support by SBASCONTROL

ENABLE AUTO 0 NONE, the most important commands are the control of the inter-
face mode INTERFACEMODE COM2 RTCMV3 NOVATEL OFF between receiver and radio
modem and the log messages, which are pushed to the serial interfaces and explained
in the next two sections. Further information about the configuration commands can
be found in [NovAtel, 2010a].

Listing 5.2: Allsat come2ascos radio modem configuration parameters for data han-
dling and correction signal acquisition.

1 $PSLL,CONFIG,NTRIP,19K2,internet.t-d1.de,t-d1,gprs,62.40.9.7:2101,user:password,
MOUNT:VRS_3_NW,SKIP-TABLE,NEED-GGA

The configuration of the come2ascos radio modem is mentioned in Listing 5.2. These
parameters determine, amongst others, the GPRS gateway (internet.t-d1.de) of
the telephone service provider, the URL and port of the Correction Signal Service
(62.40.9.7:2101), as well as the mount point (MOUNT:VRS 3 NW) for the retrieving
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of signal correction sets. A detailed description of all parameters is given in [Allsat,
2008].

5.1.3. Correction Signal Acquisition

The correction signal acquisition follows the explanations of Section 4.1.2. The re-
ceiver is configured by the LOG COM2 GPGGA ONTIME 5 command to send a $GPGGA

message (see Listing 4.1) at an output rate of five seconds. This output is done on
COM2, the communication port to the radio modem. As soon as the radio modem
receives the $GPGGA message, it starts to register to the high precision SAPOS HEPS
Correction Signal Service to retrieve signal correction sets, encoded in the RTCM
standard. Listing 5.2 shows that the radio modem is configured to exact GPS and
GLONASS corrections and additional coordinate transformation parameters from a
non-physical reference station (VRS), which has been computed by the information
of the Correction Signal Service’s reference stations network and has been located
in the close surrounding of the $GPGGA position [SAPOS, 2012].

The SAPOS HEPS guarantees horizontal positioning accuracy of 1 - 2 cm (RMS)
through using adequate GNSS hardware equipment and suitable satellites’ constel-
lations [SAPOS, 2010]. As the prototypical setup is based on L1 signal DGNSS
technique, the assured accuracy is not achieved but the signal corrections are more
than sufficient for the setup’s positioning and, therefore, already meet the require-
ments of a future upgrade to RTK-GNSS as demanded in Section 3.1.2.

5.1.4. MD4-1000 Firmware Modification

Completing the integration of the positioning sytem, the information, processed by
the receiver, is forwarded to the MD4-1000’s Navigation Controller with an output
rate of 4 Hz. The NC’s firmware is modified by a position information parsing routine,
which is written in the C programming language. The software is designed to accept
two consecutively output log messages, to fill the data fields of the MD4-1000’s
internal data structure (see Listing 3.1).

It is obvious from Listing 5.3 that the output logs (PSRDOPA and BESTXYZA) are
subdivided into a header and body string, which are separated by a semicolon. The
header contains information about the GNSS time. The body contains log specific
information about e.g. DOP values, the status of the current positioning solution,
the coordinates in X,Y,Z, the estimated position accuracies, the number of tracked
satellites and many more, which is a requirement of the data structure.
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Listing 5.3: NovAtel PSRDOPA and BESTXYZA message logs for communication with
the MD4-1000’s NC.

1 GNSS Logs (Novatel)
2

3 PSRDOPA: (DOPs of current SVs)
4 #PSRDOPA, port, ?, ?, gps time status, gps week, gps seconds, ?, ?, ?;gdop, pdop, hdop, htdop

, tdop, cutoff, #prns, prn, next prn...
5

6 BESTXYZA: (Cartesian coord pos)
7 #BESTXYZA, port, ?, ?, gps time status, gps week, gps seconds, ?, ?, ?;p-solstat, p-type, p-x

, p-y, p-z, p-xstd, p-ystd, p-zstd, v-solstat, v-type, v-x, v-y, v-z, v-xstd, v-ystd, v-
zstd, stnid, v-latency, diff_age, sol_age, #SV, #solnSV, #ggl1, rsrvd, rsrvd, ext sol
stat, rsrvd, sig mask

Listing 5.4 shows the most important steps of the parsing routine. In a first step, the
incomming log message is handed over to the parsing method gps parse novatel()

as ASCII string (input buffer). The function analyzes whether the input buffer

contains characters and if so, tries to split the ASCII string into its header and body

using gps split message(). In case of success, the two corresponding character
arrays are returned. The routine then distinguishes between PSRDOPA and BESTXYZA.
If the input buffer was filled with the PSRDOPA log, the header array is used to
extract GNSS solution status and time information and in a consquent step, the
body array is used to acquire DOP information. If the input buffer was filled with
the BESTXYZA log, it is only the information contained in the body array that is
used for getting position and accuracy values. No matter which character array was
detected, the acquired information is subsequently written to the data fields of the
navsol msg and internal flags are set.

Listing 5.4: MD4-1000 NC parsing routine for NovAtel OEMStar PSRDOPA and
BESTXYZA message logs.

1 void gps_parse_novatel(char* input_buffer)
2 {
3 // Check if input_buffer contains characters
4 if(input_buffer != NULL)
5 {
6 // Split input_buffer into header and body
7 char header[1024];
8 char body[1024];
9 gps_split_message(input_buffer, header, body);

10

11 // Message Type #PSRDOPA ///////////////////////////////////////////////////////////
12 if(memcmp(header,"#PSRDOPA",8) == 0)
13 {
14 int i = 0;
15 char *token;
16 char *t_status; // GPS Status
17 // ...
18
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19 // Split header into tokens and parse to #PSRDOPA Variables (Acquire GNSS status and time
information)

20 token = header;
21 while(token != NULL)
22 {
23 switch(i)
24 {
25 case 4:
26 {
27 // GPS Status -> t_status
28 t_status = token;
29 break;
30 }
31 // ...
32 }
33 i++;
34 token = gps_skip_to_next_token(token);
35 }
36

37 // Split body into tokens and parse to #PSRDOPA Variables (Acquire DOP information)
38 // ...
39

40 // Fill navsol_msg
41 msg.itow = (int) ((t_seconds)*1e3);
42 // ...
43

44 // Set flags
45 if(memcmp(t_status,"FINESTEERING",12) == 0)
46 {
47 msg.flags = (msg.flags | (1 << 2));
48 // ...
49 }
50 }
51

52 // Message Type #BESTXYZA //////////////////////////////////////////////////////////
53 else if(memcmp(header,"#BESTXYZA",9) == 0)
54 {
55 // ...
56 }
57 }
58 }

5.2. Sensor Platform Framework Input-Plugin

This section describes the developed MD4-1000 specific Input-Plugin, which imple-
ments the SPF input plugin interface, using the Java programming language. Its
functionallity follows the demands of Section 3.2 and the architectural draft, which
has been established in Section 4.2.
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Figure 5.5 shows a simple UML6 class diagram of the IfgicopterInputPluginMD

class, depicted in the green box, and the implemented SPF interfaces, depicted in red
boxes. This diagram lists all attributes and operations of the individual classes. The
most important operations of the IfgicopterInputPluginMD class, namely init(),
parseDownlink(), getNewData() and getConfigFile(), will be explained in the
following, using Java code snippets.

Figure 5.5.: UML class diagramm of the IfgicopterInputPluginMD class and its
implemented interfaces.

Listing 5.5 shows the init() method of the IfgicopterInputPluginMD class. This
method establishes a connection to the named pipe server, which is implemented
by a running mdCockpit Downlink Decoder Dialogue (see 4.2.1). In a first step, an
analysis for a running Downlink Decoder Dialogue is carried out. If a valid Downlink
Decoder Dialogue is detected, its unique identification number (dld) is determined
and a thread for receiving the MD4-1000’s sensor data is implemented in a sub-
sequent step. In this thread’s run() method, a while-loop queries the named pipe
server for the current sensor data at a rate of 1 Hz, by using the mdPipeAccess()

method. In a next step, the queried sensor data is parsed by the parseDownlink()

method, which is the main function for extracting the sensor data information. This
method is called with a sensor data string parameter, which has been retrieved as
a return statement from the mdPipeAccess() method and is encoded according to
the explanations in Section 4.2.1. Detailed information about the string’s format is
given in [MD, 2011a].

6The Unified Modeling Language (UML) is a standardized notation in the field of software engi-
neering.
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Listing 5.5: IfgicopterInputPluginMD’s init() method for controlling access and
query of a named pipe server, as well as parsing of MD4-1000 navigation
sensor data.

1 @Override
2 public void init() throws Exception {
3 // pipe server connect to pipe
4 pipe = new RandomAccessFile("\\\\.\\pipe\\mdCockpitPipeService", "rw");
5 log.info("Pipe has been opened....");
6

7 // check ENUM for connected Downlink Decoder Number
8 final int dld = parseENUM(mdPipeAccess("ENUM\n"));
9 if(dld != -1){

10 log.info("Downlink Decoder detected.");
11 // threading to get DOWNLINK Data (rate: 1Hz)
12 new Thread(new Runnable() {
13 @Override
14 public void run() {
15 while (running) {
16 // get downlink message from pipe server
17 HashMap<String, Object> data;
18 try {
19 data = parseDownlink(mdPipeAccess("DOWNLINK " + "DLD"+dld+"\n"));
20 synchronized (buffer) {
21 buffer.add(data);
22 }
23 } catch (IOException e) {
24 log.error(e.getMessage(), e);
25 }
26 try {
27 Thread.sleep(1000);
28 } catch (InterruptedException e) {
29 log.error(e.getMessage(), e);
30 }
31 }
32 }
33 }).start();
34 }
35 else {
36 log.warn("Downlink Decoder not detected.");
37 }
38 }

Focusing on parseDownlink(), it becomes apparent that the sensor data string is
primarily split into its 256 ASCII-represented hex-encoded bytes (see Listing 5.6).
In doing so, each byte’s superfluous digits, namely 0x, are cropped for subsequent
processing. Following this, the bytes are regrouped from little endian to big endian
for a conversion from hex to decimal representation. Then, the conversion to decimal
observation values is carried out with respect to the position of the bytes in the
inital sensor data string. The information about the relation between observation
value and byte position can be deduced from [MD, 2011a]. Finally, the converted
values are added to a HashMap<String, Object>, where String defines the sensor
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observation’s name, and Object defines the data type and value. For the subsequent
step of processing and standardization, it is important that the observations’ naming
is in analogy to the specified names in the SensorML (<input>) elements (see Listing
4.3).

Listing 5.6: IfgicopterInputPluginMD’s parseDownlink() method as for parsing
a received sensor data string.

1 /*
2 * Method to parse DOWNLINK Data content
3 */
4 protected static HashMap<String, Object> parseDownlink(String responseBody) throws

IOException {
5 // create a HashMap
6 HashMap<String, Object> hashMap = new HashMap<String, Object>();
7

8 if(responseBody != null){
9 // split data string into discrete components

10 String[] hexDataLines;
11 String[] hexData = null;
12 ArrayList<String> lHexData = new ArrayList<String>();
13 hexDataLines = responseBody.split("\n");
14 for (int i = 0; i < hexDataLines.length; i++){
15 hexData = hexDataLines[i].split(",");
16 for (int j = 0; j < hexData.length; j++){
17 // fill lHexData with all 256 values and crop them to the last 2 digits (e.g. 0x9C -> 9C)
18 lHexData.add(hexData[j].substring(2));
19 }
20 }
21

22 /*
23 * regroup all values of lHexData from little Endian to big Endian
24 * convert all values to decimal values
25 * add all values to HashMap
26 */
27 // conversion variable i
28 Long i;
29 // GPS Time Of Week [ms] (DWORD)
30 String gpsTOW = lHexData.get(31) + lHexData.get(30) + lHexData.get(29) + lHexData.get(28);
31 // GPS Week (DWORD)
32 String gpsW = lHexData.get(35) + lHexData.get(34) + lHexData.get(33) + lHexData.get(32);
33 // Set GPS Time (in ms)
34 int weekMS = 604800000;
35 Long gpsMS = new Long(Long.parseLong(gpsTOW, 16)) + (new Long(Long.parseLong(gpsW, 16)) *

weekMS);
36 hashMap.put("GPS Time", gpsMS);
37 // LLA Position Latitude [Decimal Degrees] (double)
38 String gpsLlaLat = lHexData.get(103) + lHexData.get(102) + lHexData.get(101) + lHexData.get

(100) + lHexData.get(99) + lHexData.get(98) + lHexData.get(97) + lHexData.get(96);
39 i = Long.parseLong(gpsLlaLat, 16);
40 hashMap.put("LLA Position Latitude", Math.round(new Double(Double.longBitsToDouble(i.

longValue()))*1E7)/1E7);
41 // LLA Position Longitude [Decimal Degrees] (double)
42 String gpsLlaLon = lHexData.get(111) + lHexData.get(110) + lHexData.get(109) + lHexData.get

(108) + lHexData.get(107) + lHexData.get(106) + lHexData.get(105) + lHexData.get(104);
43 i = Long.parseLong(gpsLlaLon, 16);
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44 hashMap.put("LLA Position Longitude", Math.round(new Double(Double.longBitsToDouble(i
.longValue()))*1E7)/1E7);

45 // LLA Position Altitude [m] (double)
46 String gpsLlaAlt = lHexData.get(119) + lHexData.get(118) + lHexData.get(117) + lHexData.get

(116) + lHexData.get(115) + lHexData.get(114) + lHexData.get(113) + lHexData.get(112);
47 i = Long.parseLong(gpsLlaAlt, 16);
48 hashMap.put("LLA Position Altitude", Math.round(new Double(Double.longBitsToDouble(i.

longValue()))*1E2)/1E2);
49 // GNSS Position Accuracy [m] (FLOAT)
50 String gpsPA = lHexData.get(95) + lHexData.get(94) + lHexData.get(93) + lHexData.get(92);
51 i = Long.parseLong(gpsPA, 16);
52 hashMap.put("GNSS Position Accuracy", Math.round(new Float(Float.intBitsToFloat(i.

intValue()))*1E2)/1E2);
53 // Attitude Roll [Degrees] (FLOAT) ...
54 // Attitude Pitch [Degrees] (FLOAT) ...
55 // Attitude Yaw [Degrees] (FLOAT) ...
56 // Relative Altitude [m] (FLOAT) ...
57 }
58 return hashMap;
59 }

Taking up on the while loop of Listing 5.5, the returned HashMap<String, Object>

is finally added to a synchronized buffer, which holds a list of HashMap<String,

Object> containing the acquired sensor data information.

Listing 5.7 illustrates two essential methods for further processing and standardiza-
tion, carried out by the SPF’s core. The SPF uses getNewData() to retrieve a copy
of the current sensor data list and, in addition, calls getConfigFile() for gather-
ing the required XML and SensorML definitions, which were introduced in Section
4.2.2.

Listing 5.7: IfgicopterInputPluginMD’s getNewData() and getConfigFile()

methods for handing over acquired sensor data and sensor information
to the SPF’s core.

1 // method to hand over a list of sensor data (List<Map<String, Object>>)
2 @Override
3 public List<Map<String, Object>> getNewData() {
4 synchronized (buffer) {
5 List<Map<String, Object>> copy = new ArrayList<Map<String, Object>>(buffer);
6 buffer.clear();
7 return copy;
8 }
9 }

10

11 // method to return a FileInputStream giving access to definitions of the Input-Plugin’s
behaviour and sensor, as well as sensor data information

12 @Override
13 public InputStream getConfigFile() {
14 // IInputPlugin description spf:plugin
15 File f = new File("config/spf/input-microdrones.xml");
16 if (f.exists()) {
17 try {
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18 return new FileInputStream(f);
19 } catch (FileNotFoundException e) {
20 log.warn(e.getMessage(), e);
21 }
22 }
23 return getClass().getResourceAsStream("/config/spf/input-microdrones.xml");
24 }

Summarizing this section, a MD4-1000 specific Input-Plugin was developed, which is
able to retrieve the MD4-1000’s navigation sensor data at a rate of 1 Hz. Moreover,
the plugin decodes the received sensor data strings and converts them according to
predefined SensorML specifications for subsequent processing and provision. At this
point, the MD4-1000’s navigation sensor data is integrated into the SPF, following
the SWE definitions, and can be published via a suitable Sensor Bus Output-Plugin
to any SWS. Section 6.2 will show the operability of the IfgicopterInputPluginMD

with an exemplatory Sensor Bus Output-Plugin.

5.3. Interaction and Overview

After having outlined the implemented prototypical DGNSS positioning system and
the developed MD4-1000 specific Input-Plugin, this section describes interaction
and overview of the established navigation sensor data architecture and its compo-
nents.

Figure 5.6 illustrates the components and data flow, starting with the acquisition of
improved positioning information by the DGNSS positioning system, depicted as a
green box on the upper left side. First of all, the position information is acquired,
following the principle, which has been introduced in Figure 4.1. Second, the infor-
mation is forwarded to the NC via receiver specific message logs, and subsequently
combined with the data of the additional navigation sensors (see Figure 4.2). Third,
the NC calculates a navigation solution and passes this solution and some platform-
specific information to a downlink transmitter. Fourth, the transmitter broadcasts a
telemetry signal stream, which is received by a base receiver station and a connected
notebook, depicted as white box. Fifth, a mdCockpit Downlink Decoder application
program implements a named pipe server for the retrieval of the signal stream’s in-
formation (see Section 4.2.1). Sixth, the MD4-1000 specific Input-Plugin accesses the
named pipe server at regular intervals of 1 s, decodes the returned sensor data string
and parses the desired navigation information (see Section 5.2). Seventh, the navi-
gation information and the according XML and SensorML descriptions (see Section
4.2.2) are handed over to the SPF’s core for processing. Eigth, a suitable Sensor Bus
Output-Plugin, which implements a Sensor Adapter, retrieves the processed data
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from the core, registers the MD4-1000 at the Sensor Bus a and publishes its data
(see Section 4.2.3). Finally, the data can be accessed by any SWS via the Sensor
Bus architecture.

Figure 5.6.: Overview and interaction of the improved DGNSS positioning system
and the developed navigation sensor data architecture
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6. Proof of Concepts

The preceding chapters established the complete architecture and interaction of the
prototypical DGNSS positioning system, its integration into the MD4-1000 Sen-
sor Platform and the sensor platform’s data integration into the Sensor Platform
Framework for subsequent usage in Sensor Web Services. This chapter evaluates the
overall concept and the interaction of all components. Thus, the requirements, which
have been demanded in Chapter 3 are compared with the implemented functionality
of the concept. Thereby, this evaluation emphasizes in particular the implementa-
tion of a valuable MD4-1000 positioning improvement and the near real-time sensor
data integration into the Sensor Web by the developed Sensor Platform Framework
Input-Plugin.

6.1. Evaluation of the Prototypical DGNSS Positioning
System

It is shown in Section 5.1 that the prototypical DGNSS positioning system is de-
signed in a modular way for a potential exchange of discrete components. Actually,
it is already well prepared for the use of more sophisticated technologies like RTK-
GNSS, which has been demanded in Section 3.1.2. Since the antenna is suited for
signal acquisition of several GNSS on a combination of L1 and L2 and the received
real-time DGNSS corrections are of high precision (see Sections 5.1.1 and 5.1.3), it
is merely the receiver that needs to be replaced by a more efficient one, in order to
be able to guarantee positioning with even higher accuracy than it is analyzed in
the following in Section 6.1.3.

According to Section 5.1.1, all implemented components are of minor size and, there-
fore, suitable for the integration into the MD4-1000. Regarding the requirements of
low power consumption in Section 3.1.4, the DGNSS receiver and antenna have been
proven to be adequate. The radio modem consumes power of approximately 3.6 W
in average and, moreover, uses the telemetry power line for its need of an exter-
nal power supply. However, with regard to the limited capacity of the MD4-1000’s
battery an optimum cannot be achieved yet.
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Two further important aspects are realized by the modification of the MD4-1000’s
firmware, which is explained in Section 5.1.4. Firstly, the estimation of the position-
ing system’s accuracy, as required in Section 3.1.3, is calculated by exploiting the
receiver’s BESTXYZ log in the implemented parsing routine. Secondly, the PSRDOP log
in addition to the before mentioned log, guarantee the integration of the receiver’s
positioning information into the sensor platform’s navigation system as claimed in
Section 3.1.5.

The following sections will evaluate the essential requirement of an improved absolute
positioning solution, as established in Section 3.1.1. These sections describe absolute
positioning tests of a MD4-1000, equipped with the prototypical DGNSS positioning
system, which have been carried out on a predefined test field in Münster.

6.1.1. Test Field Horstmarer Landweg

As the evaluation of positioning requires a reliable source of reference, a test field
was set up on the sports ground at Horstmarer Landweg in Münster. The test field
consists of ten Ground Control Points (GCP), which were defined by two measure-
ments with an advanced RTK-GNSS equipment. These GCPs are represented by the
cover plates’ centers of the sports ground’s sprinkler system. Their coordinates were
determined in the World Geodetic System 84 (WGS84) Reference System with an
achieved position accuracy of approximately 2 cm, using SAPOS-HEPS. Thereby,
an adequate and reliable reference for further position measurements, which are
intended to be at a best possible accuracy of 0.4 m (see Section 3.1.1) is given.

6.1.2. Positioning System Tests

The accuracy of the improved DGNSS positioning system was evaluated by carry-
ing out measurements under realistic conditions. Therefore, the components of the
positioning system were mounted to a MD4-1000 Sensor Platform (see Figure 6.1).
Whereas the DGNSS antenna was integrated into the MUAV’s cap to guarantee
best possible acquisition of GNSS satellite signals, the receiver and radio modem
were mounted to the take-up system on the bottom side as a workaround for the
test and were not embedded into the body .

The positioning system tests were carried out on the predefined test field Horstmarer
Landweg. For this purpose, the MD4-1000 was placed on a GCP and static position
measurements were made for both setup types, the standard ublox LEA-4H with
SBAS support (DGPS/EGNOS) and the implemented OEMStar with SAPOS sup-
port (DGNSS/SAPOS). One test per setup type was made with an update rate of 4
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Figure 6.1.: Static position measurement of a MD4-1000 with mounted DGNSS-
based positioning system on a predefined GCP.

Hz over a time period of approximately 15 minutes. Thereafter, the measurements’
accuracies for the individual test were evaluated and the results are introduced in
the following section.

6.1.3. Statistical Analysis of Positioning Accuracy

In a first step of the statistical analysis, the measured position data was prepared
for processing. As the acquired GNSS coordinates are represented in WGS84 both
as X,Y,Z and as geodetic longitude, latitude and ellipsoidal height, it is cumbersome
to do metrical accuracy statements in horizontal and vertical direction. Therefore,
the coordinates were transformed in the Universal Transversal Mercartor (UTM)
system to facilitate the interpretability of the achieved accuracies by comparing
Easting, Northing and Height values.

After the transformation, all heights were corrected by the identified antenna’s offset
and the coordinates of each position data set were compared to the coordinates of
the GCP. By substraction, biases were calculated, representing the position errors in
the directions of the according coordinate axis’. Figure 6.2 shows time series of the
position errors, with respect to their individual coordinate directions. The proceeding
in time is plotted on the X-axis, whereas the position error is plotted on the Y-axis.
It is already apparent from this figure that the errors of the DGPS/EGNOS setup,
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which are indicated by a blue line, show a higher amplitude as the errors of the
DGNSS/SAPOS setup, represented as a red line. Moreover, Height errors in both
setups are identified as larger than errors in Northing and Easting. This is traced
back to a disadvantageous satellite constellation, due to the unchangable fact that
satellites can only be observed from the upper side of the Earth’s surface.

Figure 6.2.: Static position measurement for t = 900 s (DGPS/EGNOS = blue) and
for t = 870 s (DGNSS/SAPOS = red) in Easting, Northing and Height.

The process of calculating standard deviations, to indicate the position accuracy, ex-
pects that position errors are normally distributed. Moreover, most of the statistical
values used for the determination of horizontal position accuracy assume that the
position errors are Rayleigh-distributed [Weltzien, 2003]. Even though this assump-
tion can rarely be found to be completely correct, it is still essential to establish,
whether the data sets are close to this assumption. Hence, the data sets were eval-
uated with regard to their normal distribution and the their position errors’ degree
of correlation.

The calculation of a correlation coefficient of the DGPS/EGNOS setup’s position
errors in Easting and Northing resulted in a value of -0.05, which shows that the
errors of the two coordinate directions are almost completely uncorrelated. In con-
trast, the correlation coefficient of the DGNSS/SAPOS setup resulted in a higher,
yet relatively small, value of 0.27 and indicates a slight positive correlation. With

54



6. Proof of Concepts

regard to the result of the aforementioned setup, one would have assumed that the
DGNSS/SAPOS setup’s position errors in Easting and Northing would be uncorre-
lated. Whether the slight correlation originates from the surrounding conditions or
the DGNSS/SAPOS setup’s positioning mechanism, could not have been inferred.

Sequential GNSS position errors tend to move over time with respect to their pre-
ceeding error value and do not vary randomly around an expected mean. As a con-
sequence, it is necessary to determine a minimal test duration, to ensure that this
behavior does not excessively influence the conclusion of position accuracy. There-
fore, each axis’ position error sample was evaluated by its autocorrelation function.
The autocorrelation function calculates the correlation between a sample’s observa-
tions as a function of separation in time between these observations. A high corre-
lation coefficient between two lagged time series’ indicates that the observations of
the first time series strongly influence the observations of the second. In contrast, a
low correlation coefficient indicates a small influence. Regarding GNSS observations,
autocorrelation at small lags is usually high and tends to decrease with proceeding
in time. Therefore, the autocorrelation functions were analyzed by searching for the
occurence of significant low autocorrelation. Subsequently, the corresponding lags
were multiplied by the receivers’ observation rate of 0.25 s to transform the lag val-
ues into observation times. Comparing these observation times to the overall test
duration, one can infer whether the test duration was appropriate.

Figure 6.3.: Lag 1 to lag 900 autocorrelation function of postion errors in Easting,
Northing and Height (Easting = green, Northing = blue, Height = red).

Figure 6.3 shows autocorrelation plots for position error time series in Easting
(green), Northing (blue) and Height (red). These plots were calculated for lags at a
range from 1 to 900. The number of lags that were used for calculation is plotted to
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the X-axis, whereas the correlation coefficient between the initial position error time
series and the lagged position error time series is plotted to the Y-axis. Both setups
were considered, the DGPS/EGNOS setup on the left hand side and the DGNSS/-
SAPOS setup on the right hand side. For the reason of comparability, the lag-specific
correlation values were plotted as continuous lines, instead of representing them in
discrete bar charts. This figure is quite revealing in several ways. Regarding both
setups, it is obvious that the position errors vary slowly over time, indicated by
decreasing functions without significant drops to a correlation coefficient of zero.
The DGPS/EGNOS setup shows that the correlation coefficient decreases quickly
in Easting and already approximates zero at a lag of 240. Besides, the correlation
coefficient in Northing decreases a bit slower compared to Easting. Together with
the correlation coefficients in Easting and Height, it crosses zero at a lag of approx.
560. However the correlation coefficient of Height crosses zero together with Easting
and Northing around a lag of 560, its decrease is slower. This indicates, that Height
errors were higher correlated until this lag. Choosing a lag of 580, it is inferred that
the position errors of the DGPS/EGNOS setup are no longer influenced by their
initial errors after a period of 120 s.
Regarding the DGNSS/SAPOS setup, it is obvious that the correlation coefficients
in Northing and Height quickly decrease and cross zero at a lag of 320 in Height and
490 in Northing. Therefore, a reach of low correlation close to the DGPS/EGNOS ob-
servations’ can be assumed. In contrast, the correlation coefficients’ curve in Easting
shows a very slow decrease and approximates a value of 0.2 at a lag of 900. Therefore,
a slight correlation can still be assumed at this point in time.

Figure 6.4.: Lag 1 to lag 1200 autocorrelation function of DGNSS/SAPOS postition
errors in Easting.
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Having calculated an autocorrelation function for higher lag numbers, a first cross-
ing of zero occured at a lag of 1200, which is equivalent to a measurement time of
5 min (see Figure 6.4). As evaluation of autocorrelation loose validity with an in-
crease of lag numbers, valuable conclusion of low correlation cannot be guaranteed.
Regarding these findings, the test duration for both setups was set to a period of
approx. 15 min to guarantee that initial position errors do not influence the complete
measurements.

Figure 6.5.: Normal QQ-Plots of the position errors in Easting, Northing and Height
(DGPS/EGNOS = blue and DGNSS/SAPOS = red).

Figure 6.5 shows a collection of Normal QQ-Plots of each position error direction.
The Normal QQ-Plots are probability plots, which compare the individual position
error probability distribution with a standard normal probability distribution, by
plotting their quantiles against each other. The colored points correspond to quan-
tiles of the position errors probability distributions (Y-axis) and are plotted against
the same quantile of the standard normal probability distribution (X-axis). As these
plots show, every position error probability distribution approaches the standard
normal probability distribution to a certain degree. This is detected by a similarity
of the colored points’ trends with the dashed lines in the plots. However, it is obvious
that none of the trends fit perfectly. As depicted in the figure, the tails of the po-
sition errors probability distributions do not follow the probablities of the standard
normal distribution in that quantiles range.
Notably, the values in the lower left corner of the Normal QQ-Plot of the DGNSS/-
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SAPOS Height postion error are far from being normally distributed. It is assumed,
that this is due to outliers, such as the initial Height measurements and subsequent
observation errors, which possess a very high deviation (see Figure 6.2). These out-
liers could be explained by the DGNSS/SAPOS setup’s receiver’s use of carrier phase
smoothing techniques. These techniques lead to the fact that initial measurements
are of minor accuracy compared to following measurements [Kettemann, 2003]. As
this evaluation focuses on the determination of positioning accuracies under realistic
conditions, the sample has not been modified to exclude these outliers.
With regard to the samples sizes, the amount of outliers was considered as small.
As a consequence, normal distribution of the position errors in every direction was
assumed for a following determination of position accuracies.

According to the results of correlation and deviation, normal distribution and Ray-
leigh distribution can be assumed for all position error data sets. Consequently,
statistical values, such as one and two dimensional standard deviations were com-
puted according to [Weltzien, 2003]. The results, as shown in Table 6.1 and Table
6.2, indicate that the improved DGNSS positioning system is working at a significant
higher absolute positioning accuracy as the standard positioning system.

1D accuracy values (RMS) [m]
Easting Northing Height

DGPS/EGNOS 1.52 1.05 2.62
DGNSS/SAPOS 0.22 0.37 0.60

Table 6.1.: GNSS positioning tests’ resulting 1D accuracy values (RMS).

It is apparent from Table 6.1 that the accuracy in determination of height has been
improved to one fourth of the standard positionig sytem’s accuracy. As the DGPS/-
EGNOS setup resulted in a value of 2.6 m (RMS), the improved DGNSS/SAPOS
setup resulted in a value of 0.6 m (RMS).

2D accuracy values [m]
Accuracies dRMS 2dRMS CEP50 CEP95
see [Weltzien, 2003] (63-68%) (93-98%) (50%) (95%)
DGPS/EGNOS 1.85 3.69 1.52 3.15
DGNSS/SAPOS 0.43 0.85 0.35 0.72

Table 6.2.: GNSS positioning tests’ resulting 2D accuracy values.
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Combining the standard deviations in Easting and Northing from Table 6.1, statis-
tical accuracy values have been calculated for horizontal accuracy estimation. Ac-
cording to Table 6.2, the accuracy improvement to one fourth of the DGPS/EGNOS
setup is confirmed. Regarding the 2dRMS, the DGNSS/SAPOS setup improves the
position accuracy to approximately 0.9 m within a probability range of 93-98%. In
contrast, the standard DGPS/EGNOS setup guarantees accuracy of a merely 3.7 m
within the same probability range.

The aforementioned findings are visualized in a cumulative relative frequency graph
(see Figure 6.6), which shows the added probability values of both setups’ two di-
mensional position errors. These values are plotted to the Y-axis, as the resulting
error within the corresponding probability range is plotted to the X-axis. The red
line clearly shows the fast increase of the DGNSS/SAPOS setup’s curve, which in-
dicates that the position error increases slowly and stays at a relatively low level of
1.0 m within almost 100% of the measurements. In contrast, the blue line climbs
slower. This means that the DGPS/EGNOS position error grows faster compared
to the improved setup. The DGPS/EGNOS position error already exceeds 1 m in
approximately 75% of the measurements.

Figure 6.6.: Cumulative relative frequency graph of 2D position errors
(DGPS/EGNOS = blue and DGNSS/SAPOS = red).

Finally, Figure 6.7 is quite revealing in several ways. As the position error in Easting
is plotted to the X-axis and the position error in Northing is plotted to the Y-axis,
the crosses indicate the discrete position errors of all measurements. Red colours in-
dicate the improved DGNSS/SAPOS setup, whereas blue colors are used to indicate
the DGPS/EGNOS setup. The dashed circles are drawn with a radius of the corre-
sponding CEP95 value. They therefore contain 95% of the position measurements. It
is obvious, that the red crosses of the DGNSS/SAPOS solution are centered around
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the coordinates of the Ground Control Point (O,O) and possess a higher accuracy,
compared to the blue crosses of the DGPS/EGNOS solution. The distribution of
the DGNSS/SAPOS position errors is almost evenly around the GCP with a slight
tendency towards northeast. In contrast, the distribution of the DGPS/EGNOS po-
sition errors cannot be considered as equally distributed around the origin. They
are characterized by a strong tendency towards northeast and to a high degree lie
within the corresponding quadrant. This tendency is not considered as a constant
offset, which is given at every measurement at every point in time. It can be as-
sumed that this tendency is due to the predominant satellite’s constellation at the
time the measurement was carried out. Furthermore, this tendency is expected to
weaken and even to turn around by measurements at different constellations over
longer time periods (e.g. 12 hours).

Figure 6.7.: Scatter plot of 2D position errors with (DGPS/EGNOS = blue and
DGNSS/SAPOS = red and circles = CEP95).
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Summarizing this statistical evaluation with regard to the aformentioned results, the
aim of improving the MD4-1000’s absolute position accuracy can be considered as
achieved. The accuracy’s improvement can be approximately determined by a factor
of 4.

6.2. Evaluation of Sensor Platform Data Integration for
Sensor Web Services

By developing a MD4-1000 Input-Plugin, the demanded functionality of the require-
ment analysis has been considered in several ways. Sections 4.2.1 and 5.2 showed
a mechanism for near real-time navigation sensor data acquisition by querying a
named pipe server, implemented by a mdCockpit Downlink Decoder application
program. As the Input-Plugin is specified to query at a rate of 1 Hz, near real-time
data acquisiton is guaranteed.
Moreover, an adapted MD4-1000 SensorML description was created and made ac-
cessible for the SPF (see Sections 4.2.2 and 5.2). As a consequence, the SPF is able
to process the MD4-1000 sensor data in accordance with the demanded standards
of SWE (see Section 3.2.2).
Section 2.3.2 showed that building on the Sensor Bus architecture, sensor data ac-
cess for any kind of SWS can be established. Therefore, the sensor data has been
integrated into the SPF, which functions as an intermediate between the MD4-1000
Sensor Platform and the Sensor Bus. Offering a suitable Sensor Bus Output-Plugin,
which is mentioned in Section 4.2.3, the data is made accessible in the Sensor Web.

The following section will show two exemplary Output-Plugins, wich have been used
to proof the established concept of the MD4-1000 navigation sensor data architec-
ture.

MD4-1000 Input-Plugin and SensorVis Output-Plugin

Figure 6.8 illustrates a MD4-1000 mdCockpit Downlink Decoder Dialogue. As the
mdCockpit application program already offers graphical user interfaces for monitor-
ing the MD4-1000’s sensor data and attitude on-the-fly, the developed Input-Plugin
does not consider MD4-1000 specific visualization. However, the functionality of the
MD4-1000 Input-Plugin has been tested by making use of the SensorVis Output-
Plugin7, which provides adapted visualization of sensor data, implemented in a 3D
virtual globe environment.

7SensorVis Output-Plugin, published at 52 ◦North Initiative for Geospatial Open Source Software
GmbH (https://wiki.52north.org/bin/view/Sensornet/SensorVis)
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Figure 6.8.: Overview of MD4-1000 navigation sensor data in a mdCockpit Downlink
Decoder Dialogue.

Figure 6.9 shows a sample flight track of a MD4-1000. The colored spheres represent
the MUAV’s positions and relative altitudes, as it is selected in the Values box on
the left side of the map window. There, all retreived position values can be identified
and selected. As it is obvious, the desired navigation sensor data values, which have
been determined in the SensorML document in Listing 4.3, can be accessed and
illustrated.

Figure 6.9.: Visualization of a MD4-1000 flight track using the SensorVis Output-
Plugin.

62



6. Proof of Concepts

MD4-1000 Input-Plugin and Sensor Bus Output-Plugin

The Sensor Bus is a logical concept and, therefore, can be implemented using various
infrastructures. The Sensor Bus Output-Plugin builds on the Extensible Messaging
and Presence Protocol (XMPP), which is an open-standard communications proto-
coll for Instant Messaging based on XML [Jabber, 2004].

Figure 6.10.: Visualization of the Sensor Bus Output-Plugin’s Bus Messages with
Spark Instant Messenger.

Figure 6.10 illustrates a conversation dialog of the Spark Instant Messenger. This
messenger was used to visualize Bus Messages, which are published to the Sensor
Bus via the Sensor Bus Output-Plugin. The received Bus Messages clearly show
that the required navigation sensor values are entirely published as tuples, specified
by sensor id and system time, containing Attitude Pitch, GPS Time, Position

Accuracy, Attitude Roll, Relative Altitude, Attitude Yaw, LLA Latitude, LLA

Longitude and LLA Altitude. Regarding the GPS Time property, it is remarkable
that the value does not increase constantly in the same intervall as the system time.
As incoming GPS Time values do not show this behaviour, it is assumed that the
interpolation mechanism of the SPF’s core influences the output in a negative way.
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7. Discussion and Outlook

Regarding the prototypical implementation of the concepts and architectures, which
have been introduced in Chapter 4, one can infer that the requirements of Chapter
3 have been considered and a complete data flow from generating improved position
data to making this data accessible by SWSs has been established. Chapter 5 out-
lined this prototypical implementation, whereas Chapter 6 proved its functionality.
The previous position accuracy has been significantly improved by a factor of 4 and
the integration of the navigation sensor data has been established via an adapted
MD4-1000 Input-Plugin in combination with the SPF and the Sensor Bus technol-
ogy. Nevertheless, implementation and testing brought up ideas for improvement,
which will be discussed in the following.

The results of the positioning tests showed a significant improvement in position
accuracy. As the data basis of the analysis was considered as adequate but not
optimal, further testing should be carried out, to confirm the findings of Section 6.1.3.
Moreover, it is of great interest whether these findings can be proven in dynamic
flight tests. In this scenario, the determination of positon errors cannot be established
by the use of GCPs. Therefore, the evaluation should be supported by the use of
geodetic total stations, which are able to track the MUAV’s position at an accuracy
of subcentimeter level [Bäumker and Przybilla, 2011].

As Section 3.1.2 already mentioned, the modular DGNSS positioning system should
be further improved by exchanging its DGNSS receiver with a RTK-GNSS enabled
receiver. First RTK-GPS tests have been carried out by a working group at the
University of Technology in Hamburg. This group presents an implementation of a
RTK-GPS positioning system, embedded into a MUAV, which guarantees a hori-
zontal accuracy of 8 cm (2dRMS) [Pilz et al., 2011].

The implemented Allsat come2ascos radio modem originated problems in its power
supply, which had to be established via the telemetry downlink’s power line. More-
over, the radio modem was not able to connect to SAPOS on every attempt. As this
problem was detected by coincidence and could not be reproduced, a solution to fix
it has not been found yet. Therefore, it would be utile to exchange the radio modem
by a more stable and lower power consumpting one. As the DGNSS positioning sys-
tem is designed in a modular way, this exchange could be carried out quite easily.
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Another possibility is to integrate a radio modem directly into the MD4-1000’s NC.
By this, a permanent MD4-1000 internet connection could be established, not only
for signal correction acquisiton, but also for tasking the MD4-1000, i.e. to execute a
changed waypoint flight.

The MD4-1000 sensor data stream contains more information than just the navi-
gation sensor data. In order to be able to use the additional sensor and system in-
formation in application systems, the developed Input-Plugin should be augmented
by this information. As the Sensor Platform Framework’s interpolation mechanism
does not support data output without interpolation according to the occurence of
specified <spf:outputProperties>, the SPF needs to be adapted to offer data output
of untouched values, i.e. RC commands, absolute numbers like the amount of visible
space vehicles or numbers that indicate a certain system status.

Finally, the use of the named pipe server, which is implemented by the mdCockpit
Downlink Decoder Dialogue, must be questioned. Running the Downlink Decoder
Dialogue and the Sensor Platform Framework together, the perfomance of the SPF,
especially of the SensorVis Output-Plugin, is significantly reduced. While retreiving
real-time data, this behaviour is barely acceptable by using a Intel(R)Core(TM)2
CPU at 1.66 GHz and 3.00 GB RAM. Emulating flight data from flight logs, causes
temporarily hold-ups of the complete system. These findings have not been ana-
lyzed in detail, yet. As these observations never occured, while using the SPF and
its Output-Plugins, it is assumed, that the Downlink Decoder Dialogue causes this
intensive wastage of system resources. Therefore, performance tests need to be car-
ried out to clarify this problem. In the case that the assumption is correct, an
improvement of the mdCockpit application program is required. As this improve-
ment is manufacturer-dependent, a decoding without using the named pipe server
must be considered. Consequently, the data stream needs to be accessed at the base
receiver station’s downlink interface and decoded by implementing an appropriate
software.
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8. Summary

This Master’s Thesis covers the development of an improved MD4-1000 Sensor Plat-
form specific positioning system and the integration of the enhanced navigation
sensor data into the Sensor Web.

In the beginning of this work, the need of improved and standardized MUAV position
data for use cases in industry and science is assessed. Subsequently, the MD4-1000
Sensor Platform, the different possibilities of GNSS-based position acquisition, as
well as the concepts of the Sensor Web Enablement initiative, the Sensor Bus and the
Sensor Platform Framework are explained. After introducing these basic components
and concepts, a requirement analysis for designing an improved DGNSS positionig
system and for providing the MD4-1000’s navigation sensor data to any kind of
Sensor Web Service, is carried out.

In a consequent conception phase, a hard- and software architecture is designed,
according to the aforementioned findings, and realized by a subsequent prototypical
implementation. The improvement in position is acquired by developing a modular
DGNSS positioning system, which is able to receive and process a combination of
GPS, GLONASS and SAPOS signals. After a necessary adaption of the Navigation
Controller’s firmware, the enhanced data is embedded into the MD4-1000 navigation
system and transmitted to a base receiver station. A microdrones-specific application
program implements a named pipe server, which is queried by an established Input-
Plugin to receive the data. In the following, the data is processed by the Sensor
Platform Framework and standardized in a predefined way. These definitons are
made with regard to the standards of the Sensor Web Enablement for an adequate
data output via a suitable Sensor Bus Output-Plugin.

In addition, an evaluation of the aforementioned implementation is carried out. The
improvement in positioning is analyzed by realistic field tests and deduced statisti-
cal estimations. The navigation sensor data’s integration into the Sensor Platform
Framework as well as into the Sensor Bus is examined by checking the data output,
generated by two existing Output-Plugins. Subseqently, the findings of the evalua-
tion are discussed and further possibilities of improvement are presented.
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A. Appendix

A.1. Software

This section introduces the software application programs, which have been used
for writing this Master’s Thesis, configuring the GNSS hardware components and
implementing the developed program code.

Eclipse IDE
The Eclipse IDE has been used for the textural design and for the implemen-
tation of all program code.
Website: http://www.eclipse.org

GIMP
The GNU Image Manipulation Program has been used for image manipulation.
Website: http://www.gimp.org

LATEX
This thesis has been written with LATEX. Thereby, the TeX Live distribution
has been chosen. The Eclipse IDE with the Texlipse-Plugin has been used for
editing.
Websites: http://www.tug.org/texlive, http://texlipse.sourceforge.net

PowerPoint
Most of the figures have been designed with Microsoft PowerPoint.
Website: http://office.microsoft.com/en-us/powerpoint/

R
Statistical analysis and graphs have been made with the R software environ-
ment for statistical computing and graphics.
Website: http://www.r-project.org/

Tera Term
The Tera Term software terminal emulator has been used for configuring the
NovAtel OEMStar receiver and the Allsat come2ascos radio modem.
Website: http://hp.vector.co.jp/authors/VA002416/teraterm.html

i

http://www.eclipse.org
http://www.gimp.org
http://www.tug.org/texlive
http://texlipse.sourceforge.net
http://office.microsoft.com/en-us/powerpoint/
http://www.r-project.org/
http://hp.vector.co.jp/authors/VA002416/teraterm.html


A. Appendix

A.2. Data CD

A compact disc with a digital appendix is attached to this Master’s Thesis, contain-
ing the following data.

Manual
A manual for installing and running the developed MD4-1000 sensor data
architecture.
Location: cd:\

Java Runtime Environment
A JRE installer. As the Sensor Platform Framework builds on the Java pro-
gramming language, a Java Runtime Environment needs to be installed.
Location: cd:\Java\

Master’s Thesis
A PDF-version of this Master’s Thesis.
Location: cd:\MastersThesis\

Microdrones: mdCockpit and Log Files
The mdCockpit application program, a firmware installer for the developed
MD4-1000 NC firmware, an exemplatory flight log file and the recorded posi-
tion test files for the DGPS/EGNOS, as well as the DGNSS/SAPOS setup.
Location: cd:\Microdrones\

Source Code: MD4-1000 Input-Plugin and MD4-1000 NC Parsing Routine
The developed source code of the MD4-1000 Input-Plugin and the MD4-1000
NC parsing routine.
Location: cd:\SourceCode\

Spark Instant Messenger
A SparkIM installer for receiving the Sensor Bus Output-Plugin’s Bus Mes-
sages.
Location: cd:\SparkIM\

Sensor Platform Framework
An executable version of the Sensor Platform Framework, including the MD4-
1000 Input-Plugin, as well as the SensorVis and Sensor Bus Output-Plugins.
Location: cd:\SPFramework\
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Test Field Horstmarer Landweg
Overview of the test field Horstmarer Landweg and coordinates of the estab-
lished GCPs.
Location: cd:\TestField\

XML Definition
The developed MD4-1000 Input-Plugin specific XML file, containing XML and
SensorML definitions.
Location: cd:\XML\
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