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Abstract: The development of unmanned aerial vehicles (UAVs) and light sensors has required new
approaches for high-resolution remote sensing applications. High spatial and temporal resolution
spectral data acquired by multispectral and conventional cameras (or red, green, blue (RGB) sensors)
onboard UAVs can be useful for plant water status determination and, as a consequence, for irrigation
management. A study in a vineyard located in south-eastern Spain was carried out during the 2018,
2019, and 2020 seasons to assess the potential uses of these techniques. Different water qualities
and irrigation application start throughout the growth cycle were imposed. Flights with RGB
and multispectral cameras mounted on a UAV were performed throughout the growth cycle, and
orthoimages were generated. These orthoimages were segmented to include only vegetation and
calculate the green canopy cover (GCC). The stem water potential was measured, and the water
stress integral (Sψ) was obtained during each irrigation season. Multiple linear regression techniques
and artificial neural networks (ANNs) models with multispectral and RGB bands, as well as GCC,
as inputs, were trained and tested to simulate the Sψ. The results showed that the information
in the visible domain was highly related to the Sψ in the 2018 season. For all the other years and
combinations of years, multispectral ANNs performed slightly better. Differences in the spatial
resolution and radiometric quality of the RGB and multispectral geomatic products explain the good
model performances with each type of data. Additionally, RGB cameras cost less and are easier to
use than multispectral cameras, and RGB images are simpler to process than multispectral images.
Therefore, RGB sensors are a good option for use in predicting entire vineyard water status. In any
case, field punctual measurements are still required to generate a general model to estimate the water
status in any season and vineyard.

Keywords: ANN; machine learning; multispectral images; RGB images; UAV; vineyard; water stress

1. Introduction

The European Union (EU) is the world leader in wine production and had a vine-growing
area greater than 3.7 million hectares in 2019; this represents approximately 50% of the global
vineyard area [1]. Spain has the largest vineyard area in the world (949,565 ha in 2020),
and the area of irrigated vineyards is increasing (from 33% in 2010 to more than 40% in
2020) [2]. Irrigation has a direct impact on vine yield and grape quality [3]. However,
irrigation to replenish potential water needs may result in increases in vegetative growth
and yield, as well as adverse effects on other parameters associated with quality, such as
sugar content, acidity, and pigment synthesis. Thus, optimal irrigation scheduling is a key
issue in balancing production and quality.
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The water resources available for agricultural uses are very limited due to the increas-
ing competition among the different economic uses of water, environmental limitations, and
the effects of climate change. This problem is especially severe in Mediterranean countries,
which experience semiarid climate conditions [4]. In this context, water use efficiency and
water productivity are highly relevant and are key factors for irrigation sustainability [5].
Thus, in the context of water scarcity, sustainable irrigation management techniques should
be applied; these techniques include regulated deficit irrigation (RDI), which is especially
useful for woody crops such as grapevines [6]. RDI can also have positive effects on vine
quality and yield. The effect of the water deficit, and consequently, the appropriate RDI
management approach, depends on the vine phenological growth, plant water stress, and
the soil and climatic water conditions [7].

These techniques, similar to other tools improving agricultural water use, require
the monitoring of crop water status and its progress over time. Midday stem water
potential (Ψstem) has been proposed as a significant physiological indicator of water status
for irrigated and rain-fed vines [8,9]. Nevertheless, these measurements are performed
manually, are time-consuming, and may not be representative of the spatial variability of
the water status over the whole vineyard [10]. Moreover, Ψstem only represents a snapshot
of plant water stress at the time of measurement [11]. Additionally, the changes in irrigation
depths with time and the lack of uniformity in water application during the irrigation period
emphasize the need for a methodology that would cover the entire season, integrating
the short-term variations in vine water status. One option would be to use an integrated
measure throughout the growing season, known as the water stress integral (Sψ), enabling
the analysis of the effect of the cumulative water deficit duration and intensity [12].

Precision viticulture involves optimizing fertilizer, phytochemical, and water appli-
cation rates to the specific needs of each area in the field [13]. The emergence of precision
viticulture was possible when technological advancements concurred, such as the appear-
ance of precise global navigation satellite systems, the development of software designed
to analyse geographic data, and the increasing availability of geolocated information re-
motely acquired [14]. Remote sensing (RS) methods based on spectral vegetation indices
(VIs) and infrared thermometry are widely used for crop water stress detection because
they are non-destructive and have low labour and time requirements. The most affected
process by water stress promoted by high temperatures is net photosynthesis. The stomatal
conductance, chlorophyll content, and leaf transpiration rate are also influenced by water
stress. The accumulated effect of these physiological parameters is evidenced in the leaf
spectral response tracked by RS technologies [15]. Hence, in this study, the canopy spectral
response was related to the accumulated effect of water stress through the Sψ.

The use of unmanned aerial vehicles (UAVs) as platforms to obtain aerial imagery has
several advantages over the use of satellites, airplanes, balloons, and helicopters, which
are traditionally used in RS. UAVs with lightweight, high-quality calibrated geometric and
radiometric sensors allow users to obtain data with very high spatial (centimetric spatial
resolution) and temporal resolutions, according to user needs. VIs, by mathematically
combining spectral reflectance data from onboard sensors, have traditionally been used
to monitor biochemical and biophysical attributes of crops. Green canopy cover (GCC),
which is representative of the canopy vigour, is another product obtained from aerial
imagery used for this purpose [16–21]. Vegetation segmentation is required to evaluate the
reflectance response of the crop and, therefore, to eliminate the soil effect [22].

The spectral response of the plant to different physiological changes does not always
corresponds to linear relations; for this reason, sometimes traditional statistical models
are not powerful enough to obtain accurate plant water status estimations [23]. Therefore,
artificial intelligence (AI) algorithms are a good alternative to other techniques due to
their ability to describe both linear and non-linear systems [10]. Machine learning (ML)
is a type of AI that gives machines the ability to learn from relationship between inputs
and outputs in the training stage. Its algorithms use an optimization method to calibrate
parameters of predetermined equations based on the training datasets. The algorithms
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progressively adapt to enhance their performance as the available number of training
samples increases [24]. ML techniques are constantly undergoing development and are
widely applied across almost all fields. However, the main limitation of ML and the
statistical models is that they are “site-specific” and “time-specific” [25].

ML has the potential to evolve a real-time farm-specific management system as sup-
port to the famer to make appropriate decisions when it is applied to remotely sensed data.
Many ML algorithms have been used to detect crop water stress using data acquired from
RS. For instance, Pôças et al. [26] used random forest (RF) and support vector machine
(SVM) predictive ML models to model predawn leaf water potential to assess water stress in
vineyards. Moshou et al. [27] attempted to distinguish between healthy and water-stressed
wheat canopies using a developed hybrid classification technique with a multisensory
fusion system and a least squares support vector machine (LSSVM) algorithm. Loggenberg
et al. [28] applied RF and XGBoost to discriminate between stressed and non-stressed vines.
Nevertheless, RF and SVM algorithms are rarely applied for the determination of plant
water status. Artificial neural networks (ANNs) are a widely utilized ML technique in water
stress detection and other studies in agriculture, and they are good at addressing agricul-
tural issues to which deterministic models cannot be applied [10,29]. Poblete et al. [22] built
an ANN model to predict the spatial variability in Ψstem in a vineyard. Romero et al. [23]
also used ANN models to predict Ψstem using VIs computed from multispectral imagery.
The relative water content, which is another water stress indicator measured based on
plant responses, was also predicted under water deficit stress in rice genotypes by Krishna
et al. [30] through spectral indices, multivariate techniques, and ANN models. However,
none of these studies evaluated the capacity of conventional RGB cameras to predict water
stress or compared their capacity with that of multispectral cameras. Although conven-
tional RGB cameras have a poor radiometric quality, the use of RGB cameras would provide
many substantial advantages, including (1) RGB cameras are much more affordable than
multispectral cameras, (2) the photogrammetry process for RGB information is more robust
than that for multispectral sensor data, and (3) the spatial resolution of RGB cameras at the
same flight height is much higher.

Therefore, the main objective of this research is to develop ANN models that integrate
very high-spatial resolution RGB and multispectral information about the canopy and
to compare their performance to predict the water stress of a vineyard. To assess their
performance, multiple linear regression models (MRM) were obtained using the same
predictor variables as in the ANN models. To obtain a wide range of vine water status con-
ditions, several irrigation strategies were tested during three irrigation seasons, including
strategies with different water salinity levels andirrigation application start throughout the
growth cycle.

2. Materials and Methods

The methodology used in this experimental study is summarized in Figure 1 and will
be detailed in the following subsections.

2.1. Study Site and Experimental Design

The field experiment was conducted in a commercial vineyard located in Fuente-
Álamo, Albacete, Spain (38◦43′43.3′′ N, 1◦28′12.6′′ W; elevation 820 m a.s.l.; see Figure 2)
during the 2018, 2019, and 2020 growing seasons. The climate is defined as typical Mediter-
ranean semiarid [31]. Climate data were obtained from a weather station located 10 km
from the experimental plot in 2018, and from a weather station located in the experimental
plot in the following studied seasons (2019 and 2020). Table 1 shows the annual rainfall and
reference evapotranspiration (ET0) data, and those recorded during the growing season
(from April to the end of September) for the studied years. There was more rainfall in 2019
and 2020 than in 2018, and in particular more rainfall during the growth stage in 2019,
mainly due to torrential rains in April and September. Rainfall was more evenly distributed
throughout the 2018 growing season (Figure 3a). In 2019, the ET0 was 8.5% higher than in
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2018, and 7.1% higher than 2020. The number of growing degree days (GDD) from April
to harvest was computed as the sum of the average daily temperatures above a threshold
of 10 ◦C [32]. Upon harvest (10 October 2018, 7 October 2019, and 29 September 2020,
respectively), GDDs were 1904, 1868, and 1836, respectively.
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Table 1. Annual and growing season (from April to the end of September) rainfall and reference
evapotranspiration (ET0) values from the studied vineyard cv. Monastrell located in south-eastern Spain.

Rainfall (mm) ET0 (mm)

2018
Annual 406 1171

Growing season 230 834
2019

Annual 550 1270
Growing season 400 879

2020
Annual 553 1185

Growing season 166 853

The trial was carried out in a 0.6-hectare subplot of a 6.5-hectare commercial vineyard
(Figure 2). Soil was sandy loam (with more than 55% sand) with a variable depth up to
90 cm. Soil had 1.2% organic matter, 47.7% active CaCO3, electrical conductivity (EC)
of 0.4 dS/m, pH of 8.9, and bulk density of 1.2 g/cm3. The irrigation water analysis
showed an EC of 1.3 dS/m and pH of 8.4. Monastrell vines (grafted onto 110-Richter)
were planted in 2007 at a spacing of 3 m × 1.5 m (2222 vines/ha). They were trained to a
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double Guyot system on a vertical trellis. The vineyard rows were oriented north–south.
The inter-row was regularly tilled and the soil under the vine rows was kept weed-free
by the use of herbicides. In May, green non-productive shoots were removed from each
vine for all treatments. In July, green shoots were trimmed from each grapevine following
local growing practices. No fertilisers were applied. Sulphur treatments were applied to
flowers and pea-sized berries to prevent fungal diseases. The plot was irrigated with 4 L/h,
self-compensating drippers with 1 m spacing. The annual available water for irrigation
was set at 1000 m3/ha.
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Figure 3. Rainfall (P), irrigation, reference evapotranspiration (ET0), and growing degree days (GDD)
during the days of the year (DOY) of the growing cycle in a vineyard located in Fuente-Álamo, Spain,
in (a) 2018; (b) 2019; and (c) 2020. The red arrow represents the date of imagery acquisition and
Ψstem measurement. 1 Baggiolini scale: [33] (A: winter dormancy, B: bleeding, B2: bud swelling,
C: bud burst, D: green shoot, E: 2 to 3 leaves unfolded, F: inflorescence clearly visible, G: separate
inflorescences, H: separate floral button, I: flowering, J: fruit set, K: pea-sized berry, L: closed bunch,
M: veraison, N: berry ripening, O: leaf fall).

The experimental design consisted of four random blocks. Six treatments (T1–T6)
were randomly established in each block (Figure 2). Each experimental unit included
four rows of 12 vines. The two outer rows were considered buffers (not considered in the
sampling process). The most external vines in every row were also considered as buffers.
The treatments consisted of a rain-fed treatment (T1), irrigation with standard-quality
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water (T2), and four irrigation treatments with added salts reaching an EC of 5 dS/m:
T3, T4, T5 and T6 (Table 2). Irrigation began when Ψstem reached −0.8 MPa, except in T5
and T6, which started at veraison. In the 2019 and 2020 seasons, the experimental design
was simplified; T5 and T6 were not implemented because differences from the other salt
treatments (T3 and T4) in terms of the agronomic characteristics and grape quality were
not observed [34].

Table 2. Description of the experimental treatments carried out in a vineyard cv. Monastrell, located
in south-eastern Spain, in the 2018, 2019, and 2020 seasons.

Treatment Description

T1 Rain-fed
T2 Irrigation with standard-quality water
T3 Irrigation with added sulphates (Na2SO4 and MgSO4)
T4 Irrigation with added NaCl
T5 Irrigation with added sulphates starting at veraison
T6 Irrigation with added NaCl starting at veraison

2.2. Plant Water Status Measurements, and Aerial Image Acquisition and Processing

Each year, the grapevine water status was determined at midday (11:30–12:30 solar
time) by measuring Ψstem on two representative vines per experimental unit and one leaf
per vine, using a pressure chamber (PMS Instrument Company, Albany, OR, USA). Leaves
were taken from the west side of the row and were placed in totally hermetic plastic bags
covered with aluminium foil for at least 2 h prior to the measurement time, from June to
September at fortnightly intervals (Figure 3). The leaves were cut and immediately placed
in the chamber. Because of the wide range of irrigation treatments implemented, the vine
water statuses of a total of 48 vines were assessed in 2018. In 2019 and 2020, 32 vines
were sampled.

Following Myers [35], the effect of water deficit duration and intensity was accounted
for by the Sψ computed as the summation of the difference in the average of two consecutive
measurements of Ψstem (ψi,i+1) and the least negative value registered during the season
(c = −0.35 MPa in 2018 and 2019, and c = −0.28 MPa in 2020), multiplied by the number of
days between one measurement and the next (n), as follows:

Sϕ = |
i=t

∑
i=0

(
ψi,i+1 − c

)
n| (1)

Flights at an altitude of 80 m high were carried out during three seasons (six flights in
2018 and seven in 2019 and 2020 seasons) (Figures 1 and 3). All flights and image acquisition
were concurrently done with Ψstem field measurements. The flights were always performed
near solar noon (between 11:00 and 12:00 solar time) to reduce the grapevine shadow on
the images. A multispectral SEQUOIA sensor (Parrot Drone SAS, Paris, France) and an
RGB SONY ILCE-5100 digital camera (Sony Corporation, Tokyo, Japan) were mounted on
a quadcopter md4-1000 (Microdrones Inc., Kreuztal, Germany). The characteristics of both
sensors are shown in Table 3.

Flight planning was performed by using the Microdrones Photogrammetric Flight
Planning software (MFLIP) [36]. Eight targets with known coordinates were used to
georeference the obtained images and calibrate the cameras geometrically. Radiometric
calibration was performed before each flight using the Aircalib calibration panel (Airi-
nov, Paris, France) for the multispectral sensor, to obtain reflectance values. For the
RGB camera, the digital levels for each band were obtained and no calibration was per-
formed. The normalisation of RGB bands was performed following the methodology of
Woebbecke et al. [37].
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Table 3. Characteristics of the sensors mounted on the UAV flown in a vineyard cv. Monastrell,
located in south-eastern Spain, in the 2018, 2019, and 2020 seasons.

Parrot SEQUOIA Sony ILCE-5100

Sensor 4.8 mm × 3.6 mm CCD 1 23.5 mm × 15.6 mm CMOS 2

Pixel size (µm) 3.75 × 3.75 4 × 4
Image resolution (columns and rows of pixels) 1280 × 960 6000 × 4000

Focal length (mm) 3.98 20

Spectral bands

Green: 530–570 nm
Red: 640–680 nm

Red-edge: 730–740 nm
Near-infrared: 770–810 nm

Red
Green
Blue

1 CCD: charge-coupled device; 2 CMOS: complementary metal oxide semiconductor.

Blurred images were automatically detected and eliminated [38] to avoid artefacts
during the photogrammetry process. The software Agisoft Metashape Professional (Agisoft
LLC, St. Petersburg, Russia), version 1.6.1, was used to perform the photogrammetric
process obtaining geomatic products, such as high-resolution multispectral (8-centimetre
ground sample distance; GSD) and RGB (2-centimetre GSD) images. These high spatial
resolution images allowed us to have a very accurate vegetation cover.

Leaf Area Index Calculation software (LAIC) [39] was used to discriminate GCC
from other features (ground, stones, and shadows, among others) in very high spatial
resolution aerial images. GCC is a geometric parameter that provides information about
vegetative growth status [40]. “GCC” was used to name the GCC from the RGB sensor
and “GCCMULTI” to define the GCC obtained from the multispectral sensor. Differences
between GCC and GCCMULTI are expected due to the different spatial resolution of the
geomatic products. Figure 4 shows the flowchart of the processes implemented with LAIC
software in a multispectral orthoimage.
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The effect of salt treatments on canopy spectral reflectance was assessed using a test of
multiple comparisons (Tukey test) to check the significant differences of the mean values of
each band acquired by the sensors for each treatment and season. No significant differences
were observed between the different treatments in any sampling events of the three seasons.
Therefore, data analysis was conducted for all treatments together.

2.3. Machine Learning Modelling and ANN

ANNs are biologically inspired computer programs designed to simulate the way in
which the human brain processes information. ANNs gather their knowledge by detecting
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the patterns and relationships in data and learn (or are trained) through experience, not
from programming. An ANN is formed from hundreds of single units, artificial neurons
or processing elements (PE), connected with coefficients (weights), which constitute the
neural structure and are organised in layers. The power of neural computations comes
from connecting neurons in a network. Each PE has weighted inputs, transfer function,
and one output. The behavior of a neural network is determined by the transfer functions
of its neurons, by the learning rule, and by the architecture itself. The weights are the
adjustable parameters and, in that sense, a neural network is a parameterized system. The
weighed sum of the inputs constitutes the activation of the neuron. The activation signal
is passed through transfer function to produce a single output of the neuron. Transfer
function introduces non-linearity to the network. During training, the inter-unit connections
are optimized until the error in predictions is minimized and the network reaches the
specified level of accuracy [41]. The NETLAB toolbox in MATLAB software (Mathworks
Inc., Natick, MA, USA) version 2018b was used to develop and test ANN models to predict
Sψ from different combinations of bands. ANN models enable better models to be obtained,
compared to traditional models, based on linear regression models due to their ability to
learn from the dataset. In this study, a multilayer perceptron ANN was used. The internal
architecture of this type of ANN is formed by interconnected nodes or neurons. Each set of
nodes forms a layer, and there are three layers in the network: (a) an input layer, where
each neuron corresponds to a different input variable (in this study, the set of separate
bands from the multispectral sensor and GCCMULTI for multispectral ANN models, and
the set of separate normalised bands of RGB sensors in addition to GCC for RGB ANN
models); (b) a hidden layer, where the data are processed; and (c) an output layer, where
the forecasted Sψ results are provided. Inter neuron connection strengths are known as
synaptic weights.

The objective of the training process is to minimize the error function that is based on
the difference between the predicted and expected values [42]. ANNs are very sensitive to
absolute magnitudes. Therefore, input data were normalised.

The feed-forward backpropagation neural network algorithm was selected during
the calibration process to obtain the values of the synaptic weights [24,43]. The collected
input data from the multispectral or RGB sensor were divided into two groups according to
Bishop [44], with the purpose of calibrating (60% of the total input dataset) and validating
(40% of the total input dataset). To divide the data set in these two groups, an iterative
random method was used in such a manner that both sets of data presented the most
similar mean and standard deviation possible. In this study the evaluated structures were a
combination from two to six hidden neurons with an interval of one, and from ten to sixty
iterations with an interval of ten. A previous analysis showed that ANN with more than six
hidden neurons and more than one hundred iterations showed better statistical parameters
that did not lead to better prediction due to overfitting effects that occurs when using a
higher number of hidden neurons and iterations than those mentioned. The selection was
performed according to the structure with the lowest RMSE [45]. After defining the best
combination, the ANN previously calibrated was applied to 40% of the remaining data to
check the performance of the trained network. Two ANN models using the bands from
multispectral or RGB sensors and GCCMULTI or GCC as predictors were used to generate
Sψ employing the data from all flying dates and treatments together for every season. In
2018, a total of 120 data points were used in the analysis of ANN. In 2019 and 2020, a total
of 112 data points for each season were used because, as mentioned above, T5 and T6 and
their four experimental units were not analysed.

To assess the accuracy and performance of the ANN models for every sampling season
(2018, 2019, and 2020), statistical data regarding the validation process (that used 40% of
the random data), such as the coefficient of determination (R2), root mean squared error
(RMSE), and relative error (RE) between the measured and simulated Sψ values for each
sampling season, were used.
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To compare the performance of ANN models with other simpler regression techniques,
MRM were assessed by employing the multispectral and RGB bands, and GCCMULTI or
GCC as predictors for all the 2018, 2019, and 2020 seasons. R2, RMSE, and RE were obtained
to assess the performance of the developed models for each season.

3. Results
3.1. Analysis of the Water Stress Integral (Sψ)

Analysing the evolution of the grapevine water status throughout the growth cycle
in different years, the computed Sψ followed the same trend in 2018 and 2020 (Figure 5).
In 2019, the increase in Sψ between the last two measurements decreased due to the
effect of more than 130 mm of rainfall four days before the last measurement (Figure 3b).
Sψ showed no differences between treatments until the last days of July (closed cluster).
Afterwards, water stress differences were visible. The Sψ experienced by the rain-fed (T1)
and irrigation (T2) treatments differed significantly. The vines of the other treatments
showed intermediate values between those from the irrigation and the more intense stress
treatment (rain-fed), although in 2020, salt treatments were closer to the irrigation regime
with good quality water, possibly due to the additional effect of recorded rainfall. Sψ
values equal to 64.3 MPa×days (T1) and 35.3 MPa×days (T2) were reached in the last
sampling date of 2018 (19 September). Such values were equal to 47.6 MPa×days (T1) and
24 MPa×days (T2) in the last sampling date of 2019 (18 September). Similar values were
obtained for the same treatments in the last sampling date of 2020 (10 September) with
46 MPa×days and 30 MPa×days. Although the pattern of Sψ was similar in 2018 and 2020
(both years had a similar rainfall in the growth cycle), the Sψ values of rain-fed (T1) and
irrigation (T2) treatments were higher in 2018, especially in T1. Although rainfall events
were recorded between the last two measurements in 2018 (35 mm), the GDD accumulated
in that period (326) more than doubled that accumulated in 2020 (153) (Figure 5). The
evaporative demand between the last two measurements was also higher in 2018 (102 mm)
than in 2020 (69 mm). In 2020, the high and well-distributed rainfall recorded in the first
months of 2020 (especially in January, March, and April) probably replenished soil water
reserves (Figure 3c). The cumulative rainfall in the first months of 2020 (from January to
April) was 345 mm (more than 60% of annual rainfall), 132% higher than the cumulative
rainfall in the first four months of 2018, and 57% higher than the cumulative rainfall in
the same period in 2019. On the other hand, evaporative demand in that period time was
258 mm, 7% lower than the evaporative demand in the first four months of 2018, and 16%
lower than the evaporative demand in the same period in 2019. As a result, the water
available in the soil profile reserve at the beginning of the grapevine activity was higher, and
the water needs of the grapevine could be supplied for a longer period of time. Therefore,
this resulted in a water status of the grapevine with lower Sψ values at the last sampling
date, similar to that obtained at the last sampling date of 2019 when 132 mm of rainfall were
previously recorded. After that rain event, the water status of the vine clearly decreased,
and this was reflected in the Ψstem as a punctual measure from −1.28 MPa (at the end of
August) to −0.58 MPa (at the last measurement in September). It was also reflected in Sψ
with a decreasing slope of the line joining the two final measurements (Figure 5). These
were the reasons why Sψ at the last sampling date of 2020, when the rainfall recorded
during the growth cycle was very low (compared to 2019), was similar to Sψ at the last
sampling date of 2019. The mentioned weather conditions determined the grapevine water
status and the greatest accumulated water stress at the end of the 2018 growth cycle.
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3.2. Estimating Sψ Based on ANN Models with RGB Data

The application of ANN based on the combination of normalised RGB bands and
GCC provided better results than those obtained from MRM with the same predicted
variables. Table 4 shows the validation results for estimating Sψ in each studied season and
every combination of years using ANN and MRM. The ANN model with the best perfor-
mance was the one that employed 2018 data with R2 = 0.98, RMSE = 1.91 MPa×days, and
RE = 10.84% (statistical parameters in bold). For that same season, results obtained from
MRM were worse, with lower R2 (0.65) and RE four times higher (48%). Analysing the
ANN validation results obtained in 2019, the model showed an RE too high (50.44%).
The results obtained in 2020 were better than those obtained in 2019, although the RE
was still too high to estimate Sψ. Analysing the seasons’ data in pairs or together, the
ANN model that used 2018 and 2020 data presented the best performance (R2 = 0.83,
RMSE = 4.9 MPa×days, and RE = 33.47%), even though the RE was high for a predictive
model. The best results obtained integrating 2018 and 2020 could be due to similar water
status development in both years. Regarding MRM, R2 values were lower than those
obtained from ANN models in all seasons, with higher errors.

Table 4. Validation results (R2: determination coefficient, RMSE: root mean squared error, and RE:
relative error) for the ANN regression models and MRM using normalised RGB bands and GCC to
simulate the Sψ for every studied season in a vineyard cv. Monastrell, located in south-eastern Spain.
Statistical values shown in bold indicate the best-performing model.

Seasons Statistical Models
RGB Bands and GCC

R2 RMSE (MPa×days) RE (%)

2018
ANN 0.98 1.91 10.84
MRM 0.65 7.1 48

2019
ANN 0.75 6.66 50.44
MRM 0.46 9.23 66.07

2020
ANN 0.88 5.40 35.83
MRM 0.69 6.77 45.29

2018 and 2019
ANN 0.70 6.97 47.24
MRM 0.33 10 69.47

2018 and 2020
ANN 0.83 4.90 33.47
MRM 0.59 7.7 51.8

2019 and 2020
ANN 0.64 7.56 50.84
MRM 0.4 9.55 66.05

2018, 2019 and 2020
ANN 0.69 6.06 44.61
MRM 0.4 9.42 64.63

Figure 6 shows the correlation between the measured and predicted Sψ in the valida-
tion process of the RGB ANN model, with the best performance in the 2018 season. The
model tends to slightly underestimate Sψ.

3.3. Estimating Sψ Based on ANN Models with Multispectral Data

ANN models based on the combination of multispectral sensor bands and GCCMULTI
provided better results than those obtained from MRM in all analysed years and combined
seasons (Table 5). The model with the best performance using ANN was that obtained
with 2018 data with R2 = 0.9 and RE = 22.97% (statistical parameters in bold). To analyse
the interannual effects, ANN models were evaluated for years in pairs, and as all years
together. The best model combining two seasons was that obtained from the 2018 and
2020 data, with the highest R2 (0.87) and the lowest RE (33.73%). In the models generated
with RGB data and those generated with multispectral data, the statistical parameters were
worse when 2019 data were used. This trend was more accentuated when RGB data were
used, showing higher stability when employing multispectral data. Moreover, except for
2018, the ANN models with multispectral data provided the best statistical parameters,
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with higher R2 and lower RE. In addition, multispectral MRM also provided better statistics
than RGB MRM, with slightly higher R2 and lower RE in most of the seasons analysed.
However, they were not better than the statistics obtained with multispectral ANN in
any analysis.
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Figure 6. Correlation between the measured and predicted Sψ using the best predictive RGB ANN
model in the 2018 season.

Table 5. Validation results (R2: determination coefficient, RMSE: root mean squared error, and RE:
relative error) for the ANN regression models and MRM using multispectral bands and GCCMULTI to
simulate the Sψ for every studied season in a vineyard cv. Monastrell, located in south-eastern Spain.
Statistical values shown in bold indicate the best-performing model.

Seasons Statistical Models
Multispectral Bands and GCCMULTI

R2 RMSE (MPa×days) RE (%)

2018
ANN 0.9 5.47 22.97
MRM 0.78 8.12 34.74

2019
ANN 0.91 4.19 28.16
MRM 0.49 8.97 64.21

2020
ANN 0.90 4.50 30.27
MRM 0.63 7.33 49.04

2018 and 2019
ANN 0.78 7.74 44.21
MRM 0.46 11.6 61.59

2018 and 2020
ANN 0.87 5.72 33.73
MRM 0.64 9.29 48.12

2019 and 2020
ANN 0.82 5.56 38.69
MRM 0.49 8.77 60.66

2018, 2019, and 2020
ANN 0.79 6.66 40.51
MRM 0.44 11 62.61

The correlation between the measured and predicted Sψ in the validation process of
the multispectral ANN model, with the best performance in the 2018 season, is shown in
Figure 7. In general, values of Sψ between 10 and 30 MPa×days were mostly overestimated,
while Sψ values above 30 MPa×days were largely underestimated.
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4. Discussion

In agriculture, ANN models are the most popular ML tools used in crop management,
water management, and soil management approaches [29]. Moreover, ANN is a widely
utilized ML technique for crop water stress determination [10]. Several studies have
employed ANN models in order to use aerial spectral information to predict crop water
stress, as in this study. Romero et al. [23] obtained aerial multispectral imagery to calculate
various VIs which were applied as inputs to one of two ANN models for estimating
Ψstem. Their model showed a strong correlation between the simulated Ψstem and the
measured Ψstem, with an R2 value of 0.53 for the validation data. In our study, when
RGB, multispectral bands, and GCC (which is representative of canopy vigour) were used
as inputs for ANN models, the R2 values of all the models generated were higher than
0.53 in all years, with a maximum value of 0.98 and a minimum of 0.64. Poblete et al. [22]
used ANN models to predict the spatial variability in Ψstem in vineyards. They used
multispectral imagery and used separate bands as inputs to the ANN models. Good results
were obtained in the comparisons of the simulated Ψstem versus the measured Ψstem, with
R2 and RE values from 0.56 to 0.87 and from 9.11 to 16.50%, respectively. In the present
study, the R2 values obtained were slightly better than (considering all growing seasons),
or in some cases similar to, the R2 values obtained in the work of Poblete et al. [22]. The RE
values in our study were higher than those obtained in their study, with the sole exception
of the model obtained for 2018 RGB data with RE = 10.84%.

The results derived from this research proved that the ANN models provided better
statistics than those derived from MRM models. Analysing ANN models, multispectral
information showed slightly more stable results when analysing interannual effects than
RGB-based information with RE between 23 and 44%, while the maximum error reached
with RGB ANN models was 50%. Moreover, except for 2018, when the best performing
model was that for RGB, the R2 is higher and the RE is either the same or lower in the
multispectral sensor-based models as compared with the RGB-based models for all the
other years and combinations of years. Nevertheless, although the results obtained with
spectral information based on the visible domain have not been the best, they were not
excessively different from those obtained with multispectral information, and are of interest
for the development of predictive models of biophysical and biochemical parameters of
crops, such as water stress. However, few authors have used visible bands to predict
water status [46–49]. Rapaport et al. [50] correlated hyperspectral signatures to midday
leaf water potential using the partial least squares regression technique, obtaining R2 (0.88)
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and error (9%) values. Midday leaf water potential was better explained by combining
the reflectance decrease at 530–550 nm with the opposed increased around 1500 nm. The
reflectance decrease at 550 nm (green band of visible electromagnetic spectrum) is mainly
associated with adjustments of photosynthetic and photoprotective pigments, such as
anthocyanin [51]; moreover, the reflectance increase around 1500 nm is strongly affiliated
with a direct decrease in leaf water content [52]. Moreover, the adequate performance
of these variables could be due to the higher spatial resolution of the RGB data. High
spatial resolution compensates the lower reflectance in the visible region of the green band
compared with that in the infrared and red-edge bands [53], and could also compensate
the poor radiometric quality of these types of cameras. Additionally, this high resolution
leads to more precise GCC values. According to the results, using high-resolution RGB
products (GSD = 2 cm) to predict Sψ instead of traditional multispectral products would
have several advantages, such as cost reduction (RGB sensors are much less expensive
than multispectral sensors); more straightforward data processing; less sun glint and fewer
hotspot effects, which are typical of multispectral images [54]; and a greater possibility of
obtaining the geometric characteristics of the plants due to the high spatial resolution of
the generated products. Therefore, using only RGB products as inputs to ANN models can
offer a good solution for measuring accumulated water stress.

Unlike most of the works found in the bibliography that estimated water status using
punctual measures such as stem or leaf water potential, in our study the Sψ was used.
This variable enabled the analysis of the effect of the cumulative water deficit duration
and intensity throughout the growing season considering midday Ψstem measurements
over a chosen period of time [35], coinciding with the fact that the accumulated effects
of water stress are shown in plant tissues affecting the spectral response of leaves [15,55].
Some studies have employed this parameter, as an index of water stress, and it was
correlated with volume growth, pre-dawn xylem water potential, soil volumetric water
content [11], productivity [56], and mortality [57]. It also has been widely used for irrigation
management and modelling in agricultural crops [58,59].

Despite the good performance of ANN regression models in predicting Sψ, especially
in the 2018 season, the models did not follow the same Sψ prediction trends in the other
years, in which R2 values decreased and RE values increased. This is particularly relevant
when data from more than one season were combined together, suggesting that a unique
robust estimation of plant water status valid for more than a single season might be difficult
to implement at a commercial level. Differences in canopy management, crop loads,
and the seasonal development of water stress might influence the relationship between
remote sensing and on-the-ground estimations of water status. In this sense, the continued
application over more than a season of different irrigation regimes might have affected
canopy morphology and growth, indeed making noise in the water status estimation from
the RGB bands.

As a consequence, the implementation of the here proposed methodology did not
allow us to generate a general predictive model of water status for the three analysed
seasons due to the differentiated interannual response of the crop on biotic and abiotic
factors. Field punctual measurements in each growing season are required to estimate water
status because vine water status depends on the availability of water (soil water, rainfall,
and irrigation), weather conditions (temperature, ET0, relative humidity, etc.) and leaf area,
as well as the ability of the vine to absorb and transport water to its organs [60]. Among
environmental factors, the climate has a more significant impact on vine development.
Moreover, climatic conditions vary from one year to the other and are difficult to control [61].
Buesa et al. [59] also found that the seasonal variation in water status was also affected by
the soil water available at the beginning of the stress period and the weather conditions
during the growth cycle, determining the exact timing of water stress and its intensity
difference between years. More effort is therefore needed to integrate additional vines and
environmental variables into the generated models to improve the water status estimations.
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5. Conclusions

The use of machine learning methods such as ANN models are a powerful tool for
processing remote sensing data obtained from UAVs to develop models for estimating
Sψ in the same seasons in which field measurements were recorded, as the fits of these
models were better than those obtained from linear regression models. Good results were
obtained using RGB bands and the GCC as the inputs for the ANN models. Although the
results obtained were more stable in the different years with multispectral sensors, the use
of conventional RGB cameras is a promising alternative due to its lower cost compared
with multispectral and thermal sensors, and the easier photogrammetric processing of the
images. High-resolution RGB images permit the precise segmentation of vegetation image
data, which is essential for avoiding soil effects and obtaining accurate GCC values.

Interannual differences in the crop response to biotic and abiotic factors did not make
it possible to generate a general model that estimates the water stress in vineyard. Thus, it
is still necessary to perform punctual measurements of stem water potential in some plants
to generate specific models that could be applied to the whole extent of the vineyard. The
methodology of this research is a first step for the development of future predictive models
of water status. It could be integrated in a farmer decision support system, since from
a few measurements of water potential in the field and the spectral information derived
from a UAV, the farmer will be able to know the water status of the entire vineyard plot,
thus making irrigation programming more efficient. Therefore, future studies will attempt
to predict the water status on a specific date in any year using a previously developed
generalizable calibrated model by extending the number of seasons analysed. This study
was carried out in a cv. Monastrell vineyard; future efforts will attempt to demonstrate that
the calibrated model can be applied to vineyards of different varieties in any location.
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