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Abstract

The perennial and stoloniferous weed, Cynodon dactylon (L.) Pers. (bermudagrass), is a

serious problem in vineyards. The spectral similarity between bermudagrass and grape-

vines makes discrimination of the two species, based solely on spectral information from

multi-band imaging sensor, unfeasible. However, that challenge can be overcome by use of

object-based image analysis (OBIA) and ultra-high spatial resolution Unmanned Aerial

Vehicle (UAV) images. This research aimed to automatically, accurately, and rapidly map

bermudagrass and design maps for its management. Aerial images of two vineyards were

captured using two multispectral cameras (RGB and RGNIR) attached to a UAV. First,

spectral analysis was performed to select the optimum vegetation index (VI) for bermuda-

grass discrimination from bare soil. Then, the VI-based OBIA algorithm developed for each

camera automatically mapped the grapevines, bermudagrass, and bare soil (accuracies

greater than 97.7%). Finally, site-specific management maps were generated. Combining

UAV imagery and a robust OBIA algorithm allowed the automatic mapping of bermuda-

grass. Analysis of the classified area made it possible to quantify grapevine growth and

revealed expansion of bermudagrass infested areas. The generated bermudagrass maps

could help farmers improve weed control through a well-programmed strategy. Therefore,

the developed OBIA algorithm offers valuable geo-spatial information for designing site-spe-

cific bermudagrass management strategies leading farmers to potentially reduce herbicide

use as well as optimize fuel, field operating time, and costs.

Introduction

Vineyard yield and grape quality are variable as a consequence of intrinsic factors related to

the crop and the field [1]. However, most vineyards have been managed as homogenous
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parcels of land due to the absence of methods that accurately analyze variability [2]. Therefore,

analysis of the influence and spatial distribution of variability will allow grape growers to man-

age vineyards more efficiently for production and grape quality [3]. This approach is the agro-

nomic basis of precision viticulture (PV), which assesses within-field spatial variability (e.g.,

soil characteristics, weed patches, fungi infection, insect pest attack, grape quality or matura-

tion, production, balance between vegetative growth, and reproductive growth, among others)

[4]. Implementation of PV, for either targeted management of inputs and/or selective harvest-

ing at vintage, begins with monitoring vineyard performance and associated attributes, fol-

lowed by interpretation and evaluation of the collected data [5]. PV is mainly focused on

optimizing crop production and profitability by reducing production inputs;, therefore, its

main objective is to diminish the potential damage to the environment and unnecessary costs

due to over-application of inputs. Besides these economic and environmental benefits, PV

practices comply with the European Policy to regulate a sustainable and rational use of agricul-

tural products and pesticides at a farm level to lead current climatic, socio-economic, and envi-

ronmental changes while ensuring feasibility and profitability [6].

Remote sensing has been widely used to characterize vineyards and their associated attri-

butes to be used in site-specific management. For example, [7,8] explored satellite images to

predict wine yield and map vineyard leaf area, respectively; [9] used images taken by piloted

aircrafts to estimate the grapevine canopy density and identify the grapevine rows. Currently,

Unmanned Aerial Vehicles (UAVs) stand out among the other remote sensing platforms

because they can fly at low altitudes, capture images with ultra-high spatial resolution (milli-

metric accuracy) [3,10,11], and, on demand in critical moments, which are not feasible with

airborne or satellite platforms. Therefore, the use of UAVs has been proven to be a crucial

remote sensing tool to address PV objectives [12–14].

Weeds are known to be a major problem in agriculture, leading to a 32% worldwide reduc-

tion in crop yields [15]. Recently, Cynodon dactylon (L.) Pers. (bermudagrass) has been

reported to infest vineyards [16,17], causing competition for nutrients and water, especially in

summer when irrigation is needed [18]. This perennial summer grass is widely adapted to a

range of climates and soils, propagates mainly vegetatively through stolons and rhizome frag-

mentation, and is considered a serious problem in cultivated crops worldwide. In addition,

weed management strategies in vineyards such as tillage, herbicides, or cover crops have strong

implications for wine quality [19–21].

The spectral similarity between bermudagrass and grapevines in summer just, when com-

petition for water is maximum and weeds must be controlled, makes discrimination using

pixel-based image analysis almost unfeasible, as this approach focuses solely on spectral infor-

mation [22]. Alternatively, the use of UAV-based Digital Surface Models (DSMs) has been

shown to be an efficient alternative to isolate and classify woody crop plants [3,23,24]. Never-

theless, computing the large amount of data embedded in UAV images and DSMs requires the

implementation of robust and automatic image analysis procedures. In this sense, object-

based image analysis techniques (OBIA) have reached high levels of automation and adaptabil-

ity to ultra-high spatial resolution images, typical of UAV images [25,26]. Compared to pixel-

based methods, the application of object-based approach offers the possibility of evaluating

spectral and textural, contextual, and hierarchical features [27], addressing challenging spectral

similarity scenarios related to the design of site-specific weed management [25]. However, to

the best of our knowledge, the UAV-based DSM and OBIA combination has not yet been

applied to map bermudagrass in vineyards.

Therefore, the goal of this research was automatic, accurate, and rapid mapping of bermu-

dagrass and designing management maps using UAV-imagery and OBIA techniques. The spe-

cific objectives included: (1) selection of the optimum spectral vegetation indices that best
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discriminated bermudagrass from bare soil as affected by sensors separately attached to the

UAV (spectral analysis); (2) development of an automatic and robust OBIA algorithm for each

camera, using those selected vegetation indices, for classifying bermudagrass, bare soil, and

grapevines and evaluating the accuracy of the procedure (image analysis); and (3) design of

site-specific management maps according to weed infestation level. It is important to highlight

that the full protocol established in this paper is composed of a novel OBIA algorithm that

does not require user intervention.

Materials and methods

Study sites description and UAV flights

This research was conducted in two experimental drip-irrigated organic vineyards, fields A

and B, located in Cabra (Córdoba, Southern Spain). Each site was approximately 0.5 hectares.

Both vineyards were planted with cv. Pedro Ximénez in 2013 with rows oriented east–west

and trained as a vertical shoot positioned bilateral cordon. Plant spacing was 2.5 m (inter-

rows) x 1.3 m (intra-row). Inter-row spaces were uniformly managed by biannual tillage and

manual mowing using a brush cutter, which effectively controlled all weed species except ber-

mudagrass, resulting in clean inter-row spacing without cover green and only with the pres-

ence of bermudagrass patches.

A quadcopter model MD4-1000 (microdrones GmbH, Siegen, Germany) with vertical

take-off and landing (Fig 1A) was used as the platform for image acquisition. This model with

four brushless motors was battery-powered and could either be manually operated by radio

control or autonomously with the aid of its Global Position System (GPS) receiver and its way-

point navigation system. The imagery were acquired with two still point-and-shoot cameras

that were separately mounted in the UAV: (1) a visible-light (RGB: Red (R), Green (G) and

Blue (B)) camera, model Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) with a

sensor size of 17.3 x 13.0 mm and 12.2 megapixels (4,032 x 3,024 pixels); and (2) a modified

(RGNIR: Red (R), Green (G) and NIR) camera, model SONY ILCE-6000 (Sony Corporation,

Tokyo, Japan) composed of a 23.5 × 15.6 mm APS-C CMOS sensor capable of acquiring 24

Fig 1. a) Quadcopter microdrone MD4-1000 with the Red-Green-Near Infrared (RGNIR) camera attached, flying over one of the vineyards and b) detail of

an RGB-image taken by the UAV from field A-2017. The circles in blue color represent bermudagrass patches growing in the inter-rows.

https://doi.org/10.1371/journal.pone.0218132.g001
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megapixels (6000 × 4000 pixels). The RGNIR camera was modified to capture information in

both the NIR and visible light (green and red) by adding a 49-mm filter ring to the front nose

of the lens, manufactured by Mosaicmill (Mosaicmill Oy, Vantaa, Finlandia), where a focus

calibration process was carried out.

The flight missions were conducted in mid-June 2016 (field A) and 2017 (fields A and B),

when bermudagrass was at the vegetative growth stage, showing the typical green color of this

phenological stage (Fig 1B), and, therefore, had a spectral response very similar to that of the

grapevines. During each flight, the UAV route was configured to fly at 30 meters altitude with

a forward lap of at least 90%. In addition, a side lap of 60% was programmed. The flights were

carried out at noon, to take advantage of the sun’s position and thus minimize shadows on

acquired images. All flight operations fulfilled the list of requirements established by the Span-

ish National Agency of Aerial Security including pilot license, safety regulations, and limited

flight distance [28].

Geomatic products generation

The images acquired from each camera were processed using PhotoScan Professional software,

version 1.2.4 build 2399 (Agisoft LLC, St. Petersburg, Russia) to generate three geomatic prod-

ucts: (1) a three-dimensional (3D) point cloud, by applying the Structure-from-Motion (SfM)

technique; (2) a digital surface model (DSM) created from the 3D point cloud that provides

height information; and (3) an orthomosaic (Fig 2), where every pixel contained RGB or

RGNIR information depending on the camera used as well as the spatial information.

The mosaicking process was fully automatic, except for the manual localization of six

ground control points (GCPs), with four placed in the corners and two in the center of each

field to georeference the geomatic products. These GCPs coordinates were measured using

two GNSS receivers: one was a reference station from the GNSS RAP network from the Insti-

tute for Statistics and Cartography of Andalusia (Spain), and the other was a GPS with a centi-

meter accuracy (model Trimble R4, Trimble company, Sunnyvale, California, United States)

as a rover receiver. First, the software matched the camera position and common points for

each image, which facilitated the refinement of the camera calibration parameters. Once the

images were aligned, the 3D point cloud was generated by applying SfM technique to the

images, which was used as the basis to generate the DSM. The DSM represents the irregular

geometry of the ground and the objects on it by means of a 3D polygon mesh. Next, the

Fig 2. RGNIR orthomosaic corresponding to field A-2016.

https://doi.org/10.1371/journal.pone.0218132.g002
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individual images were projected over the DSM, and the orthomosaicked image was generated.

Finally, the DSM was joined to the orthomosaic as a TIFF file consisting of a 4-band multi-layer

file (Red, Green, Blue and DSM, for the visible-light camera; and Red, Green, NIR, and DSM,

for the modified one). A further description about the PhotoScan function is given in [29].

The geomatic products had different spatial resolutions according to the technical charac-

teristics of each sensor. For example, in 2016: (1) 0.86 and 1.72 cm/pixel for the orthomosaic

and DSM generated from the RGB camera; and (2) 0.54 and 1.07 cm/pixel for the RGNIR

camera, which was almost half of the values obtained with the RGB camera. The methodology

to build these accurate geomatic products has been validated in previous studies [24].

Ground truth data

A set of 18 1 x 1 m georeferenced sampling frames was placed in every field to represent the

current weed infestation in the vineyard, ensuring that the entire field had an equal chance of

being sampled without operator bias [30]. The frames were set covering bare soil and bermu-

dagrass patches, and georeferenced as described for the GCPs (Fig 3).

The high resolution of the orthomosaic (Fig 4A) made it possible to visually identify the

bermudagrass patches in every sampling frame and conduct a manual classification of weed

infestation and bare-soil (Fig 4B) using ENVI software (Exelis Visual Information, Solutions,

Boulder, Colorado, United States), which resulted in the ground truth (GT) data for the proce-

dure. 25% of the GT full dataset corresponding to field A-2016 as well as 25% the GT full data-

set of field A-2017 were used for the spectral analysis, whereas the remaining 75% of every

field-year were employed for the validation of the image analysis (OBIA algorithm) of each

orthomosaic. Additionally, field B-2017 was selected to generalize the procedure, using the GT

full dataset only for validation purposes of the classification of bermudagrass infestation map.

Spectral analysis: Optimum vegetation index

In order to spectrally separate bare soil and bermudagrass, the following analysis was per-

formed. As explained above, 25% of the GT full dataset from both the A-2016 and A-2017

fields was used in the spectral analysis to select the optimal vegetation index (VI) that best

Fig 3. a) Placing and georeferencing the frames in field A-2017 and b) detail of a frame covering bermudagrass and bare soil classes. The individuals in this manuscript

have given written informed consent (as outlined in PLOS consent form) to publish these case details.

https://doi.org/10.1371/journal.pone.0218132.g003
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discriminated bermudagrass and bare soil for each camera (visible and modified). The mean

spectral reflectance calculated for the three spectral bands of each camera (RGB and RGNIR)

for each class (weed and bare soil) were used to calculate 14 and 18 vegetation indices and

band ratios, respectively (Table 1). The VIs in this study are related to vegetation conditions

and plant structure and are widely used in agricultural studies [31,32].

The VIs were analyzed by performing a one-way analysis of variance (ANOVA) followed

by Tukey´s Honest Significant Difference test (P<0.05) and finally, applying the M-statistic

(Eq 1) [33] to quantify the histogram separation of vegetation indices. The M-statistic value

expresses the difference in the means of the class 1 and class 2 histograms normalized by the

sum of their standard deviations (σ). According to [33], the same difference in means can give

different measures of separability depending on the spread of the histograms, i.e., narrow his-

tograms (smaller σ) will cause less overlap and more separability than wider histograms for the

same difference in means.

M ¼
Meanclass1 � Meanclass2

sclass1 þ sclass2
ð1Þ

Statistical analysis was conducted using the software JMP (JMP 10, SAS Institute Inc., Cam-

pus Drive, Cary, NC, USA 27513). The selected VI for each camera was subsequently imple-

mented in the OBIA algorithm for bermudagrass, bare soil, and grapevine classification.

Image analysis: Bermudagrass mapping

OBIA algorithm. Once the VIs that best separated bare soil and bermudagrass were

selected, a novel OBIA algorithm was developed to classify the grapevines, bare soil, and ber-

mudagrass using Cognition Network programming language with the eCognition Developer

9.2 software (Trimble GeoSpatial, Munich, Germany). The algorithm is fully automatic and

requires no user intervention. Besides this, the same algorithm was used to analyze the ortho-

mosaics generated by each camera, with the only difference being the VI implemented by

selecting the optimal one for each. The sequence of phases that compose this algorithm is

detailed below:

Fig 4. Detail of RGB-orthomosaic of field A-2017 showing: a) sampling frames covering bermudagrass and bare soil and b) manual classification of bermudagrass (green

color) and bare soil (brown color) classes that made up the ground truth data.

https://doi.org/10.1371/journal.pone.0218132.g004
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i. Vine classification: Height information contained in the DSM model was used to detect and

classify grapevine objects (Fig 5B), as fully described in a previous work [3], which first con-

sisted of orthomosaic-image segmentation based on spatial information for object genera-

tion (chessboard segmentation). Then, the DSM standard deviation was used to create "vine

candidates" that were analyzed at the pixel level to achieve a more refined grapevine classifi-

cation. Finally, the algorithm classified every pixel as vineyard or not-vineyard by compar-

ing their height value from the DSM with that of the adjacent bare soil. Therefore, spatial

information proved to be very suitable for grapevine classification, avoiding errors related

to field slope by considering average soil altitude as well as avoiding confusion due to spec-

tral similarities. Finally, the objects in the images were classified as vineyard or not-vineyard

objects (Fig 5C).

Table 1. Spectral vegetation indices and their equations used for both cameras.

Vegetation index Equation Cameraa

R/B index [34] R
B 1

R/G index (This study) R
G 1, 2

Normalized Red Green difference index [35] NRGDI ¼ G� R
GþR 1, 2

Normalized pigment chlorophyll index [36] NPCI ¼ R� B
RþB 1

Visible atmospherically resistant index [37] VARI ¼ G� R
GþR� B 1

Woebbecke index [38] WI ¼ G� B
R� G 1

Excess Blue [39] ExB = 1.4 B−G 1

Excess Green [40] ExG = 2 G−R−B 1

Excess Red [41] ExR = 1.4 R−G 1, 2

Excess Green-Red [42] ExGR = ExG−ExR 1

Color index of vegetation [43] CIVE = 0.441 R−0.811 G+0.385 B+18.78745 1

Vegetative index [44] VEG ¼ G
ðR0:667Þ�ðB1� 0:667Þ

1

Indices combination1 [39] COMB1 = 0.25 ExG+0.3 ExGR+0.33 CIVE+0.12 VEG 1

Indices combination2 [45] COMB2 = 0.36 ExG+0.47 CIVE+0.17 VEG 1

Chlorophyll index green [46] CI ¼ NIR
G � 1 2

Difference vegetation index [47] DVI = NIR−R 2

Vegetation index faster [48] VIF ¼ NIR
NIRþR 2

Green normalized difference vegetation index [49] GNDVI ¼ NIR� G
NIRþG 2

Ratio vegetation index [50] RVI ¼ R
NIR 2

Modified normalized difference vegetation index [51] MRVI ¼ RVI� 1

RVIþ1
2

Modified simple ratio [52] MSR ¼
NIR
R � 1ffiffiffiffiffiffiffiffi
NIR
R þ1

p 2

Modified soil-adjusted vegetation Index [53] MSAVI ¼ 2NIRþ1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2NIRþ1Þ2 � 8�ðNIR� RÞ
p

2

2

NIR–G index [54] NIR−G 2

NIR/G index [54] NIR
G 2

Non-linear vegetation index [55] NLI ¼ NIR2 � R
NIR2þR

2

Normalized difference vegetation Index [56] NDVI ¼ NIR� R
NIRþR 2

Optimization soil-adjusted vegetation index [57] OSAVI ¼ NIR� R
NIRþRþ0:16

2

Transformed vegetation index 1 [58] TVI1 ¼ NDVIþ0:5

ABSðNDVIþ0:5Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABSðNDVI þ 0:5

p
Þ 2

Transformed vegetation index 2 [59] TVI2 = 0.5×(120×(NIR−G)−200×(R−G)) 2

a1: RGB; 2: RGNIR

https://doi.org/10.1371/journal.pone.0218132.t001
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ii. Bermudagrass and bare soil classification: Once the grapevines were correctly classified, the

orthomosaic was segmented using a multiresolution segmentation where the layers Red,

Green, and Blue for the RGB camera, and Red, Green, and NIR for the RGNIR camera

were weighted to 1, whereas the DSM layer was weighted to 0 in both cases. Multiresolution

segmentation is a bottom-up segmentation algorithm based on a pairwise region merging

technique in which, based on several parameters defined by the operator (scale, color/

shape, smoothness/compactness), the image is subdivided into homogeneous objects. The

scale parameter established was 5, whereas 0.3 and 0.5 were chosen for shape and compact-

ness, respectively. These values were chosen after performing several tests for showing a

better visual adjustment by delineating bermudagrass patches and bare soil. Therefore,

these values could also be used in other vineyards with similar characteristics where bermu-

dagrass classification is required.

Subsequently, the no-vineyard objects, consisting of bare soil and bermudagrass were classi-

fied using the VI selected for each camera in the previous section. The optimum ratio value was

conducted using an automatic and iterative threshold approach following the Otsu method [60]

implemented in eCognition, in accordance with [61]. Finally, a classified map was generated

where bermudagrass patches, bare soil, and grapevine objects were defined (Fig 5D).

iii. Site-specific bermudagrass management maps: After vineyard–weed–bare soil classifica-

tion, information relative to bermudagrass patches was available such as number, location

(X and Y UTM coordinates), and area covered by weed patches and vines from the classi-

fied map. As an additional phase of the process, the algorithm has the option to design

site-specific bermudagrass management maps that are user-configurable depending on

the management strategy. For this purpose, the algorithm created a new level by copying

the classified object level to an upper level and a chessboard segmentation was applied to

build a user-adjustable grid framework following the grapevine row orientation. In this

Fig 5. Several stages of the OBIA algorithm for an enlarged view belonging to field A-2016 and RGB camera. a)

the RGB bands, b) the DSM of the orthomosaic, c) vine line classification (grapevines in green color and no-vineyard

objects in white color), and d) classified map (grapevines in green color, bermudagrass patches in red color, and bare

soil in yellow color).

https://doi.org/10.1371/journal.pone.0218132.g005
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experiment, a customizable 1 x 0.5 m grid size was selected according to the specifications

of the intra- and inter-row weeder usually used in organic vineyards [62]. A hierarchical

structure was generated in the inter-row area between the grid super-objects (upper level)

and the bermudagrass and bare-soil sub-objects (lower level). Next, the weed coverage (%

of bermudagrass) was automatically calculated from the ratio of bermudagrass coverage

to total area per grid, as it is considered as one of the main variables in the weed control

decision-making process [25]. Thus, based on the information related to weed-free zones

and weed-infested zones, site-specific treatment maps were created.

Bermudagrass map validation. The accuracy of the algorithm was assessed by comparing

the GT data corresponding to bermudagrass infestation and bare soil (manual weed coverage

and bare soil area) with the output of every image classification process (estimated bare soil

and weed coverage) through a confusion matrix. As commented before, 75% of the GT full

datasets corresponding to field A for both 2016 and 2017 were used to assess the classification

accuracy. In the case of field B-2017, the GT full dataset was used, so this set of examples was

used only to assess the performance (i.e., generalization) of the developed algorithm. The con-

fusion matrix provided overall accuracy (OA) (Eq 2) of each orthomosaic classification, which

represented the percentage of correctly classified area (bare soil and bermudagrass); and the

producer´s accuracy (PA) that indicated the probability that a classified object actually repre-

sents that category, i.e., the category of the ground truth data [63]. The omission error, i.e., the

complementary value to PA, was also calculated from the confusion matrix and quantified the

proportion of bermudagrass coverage misclassified as bare soil.

Overall classification accuracy %ð Þ ¼ 100�
Area correctly classified
Total area classified

ð2Þ

The methodology to identify vine rows based on DSM information has been validated in a

previous study [3], where a high level of precision was reached.

Results and discussion

Spectral analysis: Vegetation index selected

Spectral information from every orthomosaic was evaluated to select the VI that best discrimi-

nated between the bermudagrass and bare soil, as affected by the spectral range of each camera,

i.e., RGB and RGNIR. Significant differences between both classes were observed in all the VI

calculated. These results confirmed the potential of discriminating bermudagrass from bare

soil by using UAV-images taken at the vegetative stage with any of the cameras (RGB and

RGNIR) onboard the UAV, when bermudagrass plants showed a very different green color

from the brown of the bare soil. The best results obtained with the M-statistic for images taken

with each type of camera were ranked and are shown in Table 2.

According to [64], two classes exhibit moderate separability when M exceeds 1 and good

discrimination when it exceeds 2. In this experiment, most of the VIs extracted for each cam-

era achieved M values larger than 2, therefore showing high discriminatory power to separate

bermudagrass from bare soil. ExGR showed the best spectral separability in the analysis of the

RGB-range, reaching an M value of 3.50, whereas GNDVI was the selected index for the

RGNIR-range spectral analysis, as obtained by the highest M value (2.27). As a result of the

spectral analysis, ExGR and GNDVI were the optimum VIs selected to carry out the discrimi-

nation between both classes for the RGB- and RGNIR-orthomosaic, respectively, thus, the cor-

responding index was implemented in the classification algorithm developed.
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ExGR is a combination of redness (ExR) and greenness (ExG) indices widely used for vege-

tation identification with visible spectral-index based methods under the assumption that

plants display a high degree of greenness due to chlorophyll in the leaves. In this context,

[39,65] used ExGR to separate the plants from the soil and residue background in the RGB

images. On the other hand, GNDVI has been used to measure several plant parameters includ-

ing N status [66,67], plant biomass [68], and early disease detection [31] due to the high sensi-

tivity to the chlorophyll concentration variation of this vegetation index. Thus, based on that

premise and the results obtained in the spectral analysis in this investigation, GNDVI showed

high robustness in the ability of separating bare soil (no chlorophyll) from bermudagrass at the

vegetative stage (in green color due to the high concentration of chlorophyll pigment) as a part

of the developed algorithm for the image analysis. These results showed the importance of the

timing for this analysis, as it is feasible when BG plants are at vegetation phenological stage

and green. On the other hand, these VIs would not be suitable for bermudagrass discrimina-

tion in another season, e.g. in winter when bermudagrass is dormant (light brown) and shows

a similar spectral response to bare soil. At that time, it would therefore be necessary to apply a

different analysis such as this one based on texture characteristics [69].

Image analysis

Classified maps. After the spectral analysis was carried out, the study focused on image

analysis. An OBIA algorithm was developed to parse the orthomosaics as affected by kind of

sensor for the suitable discrimination of bermudagrass patches. Next, the algorithm automati-

cally mapped grapevines, bermudagrass, and bare soil by classifying every image object accord-

ing to these three classes. Thus, a classified map for each field, year, and camera was created

(Figs 6 and 7), where clear differences in grapevine size were observed when analyzing the two

years studied. Moreover, the developed methodology was able to map bermudagrass within

the grapevine rows in the first study year (2016) since at that time the vines were at an initial

stage of growth so that the canopy was not closed and it was possible to get information down

to ground level. Nevertheless, the growth of the grapevines in the second year (2017) made it

unfeasible to obtain that information up to ground level within the row as the vines showed

overlapping crowns. Consequently, using the developed UAV-based OBIA algorithm at the

proper timing of grapevine growth would enable accurate mapping of weeds within vine rows.

Table 2. Vegetation indices analyzed with the highest values of M-statistical obtained for each camera.

Camera Vegetation Index M-statistical value

RGB Excess Green-Red (ExGR) 3.50

Indices combination1 (COMB1) 3.48

Excess Red (ExR) 3.16

Color index of vegetation (CIVE) 3.06

Excess Green (ExG) 2.87

RGNIR Green normalized difference vegetation index (GNDVI) 2.27

Difference vegetation index (DVI) 2.15

Chlorophyll index Green (CI) 2.14

NIR/G 2.14

NIR-G 2.10

Letters in bold correspond the spectral vegetation indices that showed the highest M values and were then used in the

further OBIA algorithm.

https://doi.org/10.1371/journal.pone.0218132.t002
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The total area occupied by grapevines and bare soil as well as the area infested by bermuda-

grass was quantified and extracted from these classified maps (Table 3).

Similar results of the classified area were obtained by using any of the sensors, e.g., 24.4%

and 24.5% for the vine class in field A-2017 when employing the RGB-sensor and RGNIR-sen-

sor orthomosaic, respectively; and similarly, for bare soil in field A-2016, reporting 82.8% and

81.7% of the classified area, which demonstrated the algorithm robustness.

An increase of approximately 21% in the vineyard was observed in the comparison of 2016

and 2017 orthomosaics for both sensors. These differences in grapevine size were the result of

usual growth as a relevant rate of development was experienced by vines in those years [70].

The surface infested by bermudagrass also augmented in the context of that temporal com-

parison, obtaining an increased value of 7.5% when the RGB imagery was analyzed, despite

uniform weed management in the inter-row spaces was carried out, This management

Fig 6. Classified maps developed by the OBIA-algorithm using RGB-imagery for field A in: a) 2016 and b) 2017.

https://doi.org/10.1371/journal.pone.0218132.g006
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Fig 7. Classified maps developed by the OBIA-algorithm using RGNIR-imagery for field A in: a) 2016 and b) 2017.

https://doi.org/10.1371/journal.pone.0218132.g007

Table 3. Classified area of grapevine, bermudagrass and bare soil obtained from the RGB and RGNIR images analyses at every location and year studied.

Camera Field Year Classified Area (%)a

Vine Bermudagrass Bare soil
RGB A 2016 3.4 13.8 82.8

2017 24.4 21.3 54.3

B 2017 20.8 21.9 57.3

RGNIR A 2016 3.7 14.6 81.7

2017 24.5 19.7 55.8

B 2017 21.3 20.5 58.2

aPercentage of surface occupied for each class respect to total field area.

https://doi.org/10.1371/journal.pone.0218132.t003
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consisted of biannual tillage and manual mowing using a brush cutter; no synthetic chemicals

were used as both fields were organic. Thus, the increase of bermudagrass coverage could be

due to inefficient weed management since perennial weeds established by rhizomes or stolons

are considered the most difficult to manage in organic orchards, and in fact, they can become

a permanent control target as the removal of aerial parts does not eliminate weeds and por-

tions of stolons or rhizomes may re-grow and colonize new areas [71]. According to [72],

among the recommendations for bermudagrass management, mowing should be minimized

as stolons can cause weed dispersion. They advised a single deep cultivation (up to six inches),

avoiding very moist soils, which brings most shoots to the surface to dry them out, and pointed

out that this weed management (tilling and drying) did not eradicate seeds in the soil. In addi-

tion, deep cultivation risks damaging the roots, trunks, and arms of the grapevines [19]. Other

alternatives for weed control include the use of cover crops such as perennial or annual grasses

(Festuca arundinacea orHordeum vulgare, respectively) or legumes (Medicago rugosa), which

compete with the bermudagrass and reduce its infestation [17].

Furthermore, a reduction in the area occupied by bare soil was found using any of the sen-

sors, which was quantified as 28.5% for the RGB-orthomosaic image and 25.9% for the

RGNIR-orthomosaic.

Bermudagrass mapping accuracy. As mentioned in the OBIA algorithm description, the

vine class was first separated from the rest of classes using DSM height information as

described in [3], where overall accuracy values higher than 93.6% were achieved in the vine

classification. The classification statistics of the bare soil and bermudagrass classes obtained in

the confusion matrix (OA and PA) for the orthomosaic corresponding to each sensor, field,

and year are shown in Table 4. The matrix indicated an overall accuracy higher than 97.7% in

all of the cases studied, well above the minimum accepted value standardized at 85% by [73].

These consistent results proved the suitability of the VIs selected in the previous spectral analy-

sis and demonstrated that the VI-based OBIA algorithm correctly identified and mapped the

bermudagrass patches in the inter-rows of the vineyards in both years of the study. Moreover,

high degrees of producer’s accuracy with values close to or even 100% were achieved in all the

studied cases, which corresponded to null or very low values of omission error.

Similar classification accuracy was achieved using images from both cameras, proving that

it is possible to map bermudagrass at the vegetative stage based on RGB-imagery and RGNIR-

imagery taken by UAV. For example, 99.6% and 99.9% of PA were obtained for the bermuda-

grass class using the RGB and RGNIR cameras in field A-2017, respectively; and moreover,

OA values of 98.7% and 97.7% were reached for those respective cameras and field in 2016.

Therefore, due to the similar results as well as the handling and cheaper costs of the conven-

tional camera, as a preliminary conclusion of this experiment, we recommend the use of an

Table 4. Classification statistics obtained in confusion matrix for each year, field and camera.

Year Field Camera Producer´s Accuracy (%) Overall Accuracy (%)

Bga Bs

2016 A RGB 98.3 99.9 98.7

RGNIR 95.7 99.9 97.7

2017 A RGB 99.6 100 99.7

RGNIR 99.9 99.9 99.9

B RGB 99.9 100 99.9

RGNIR 99.9 100 99.9

aBg: Bermudagrass; Bs: Bare soil. The algorithm was executed with the selected VI for each camera in the previous section, i.e. ExGR for RGB-orthomosaic and GNDVI

for RGNIR-orthomosaic.

https://doi.org/10.1371/journal.pone.0218132.t004
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RGB sensor for bermudagrass mapping at the vegetative stage during early summer in vine-

yards. Thereby, only results for this camera are shown throughout the rest of the manuscript.

The highly accurate results achieved in the image analysis proved that the combination of

UAV imagery and OBIA is a suitable tool to map the usual classes including weeds in vine-

yards. In this context, [25] used a similar image-based UAV technology to discriminate weeds

in maize (Zea mays L.) fields in the early season obtaining 86% of OA in the confusion matrix;

however, the precision of the OBIA algorithm was evaluated by comparing weed coverage

over grid units, not over objects. Consequently, the OA was related to the percentage of frames

correctly classified (the number of correct frames as a percentage of the total number of sam-

pling frames) and unsuitable spatial accuracy measures for OBIA were performed. In our

research, the shape and location of weeds were evaluated, as first proposed by [74], who

obtained a high level of agreement in the comparison between the manual weed classification

in herbaceous crops and that automatically performed by the OBIA algorithm; however, no

matrix confusion was calculated in that experiment. Furthermore, although a confusion matrix

was performed in the previous paper for the 3D characterization of vineyards [3], the matrix

evaluated the precision in the grapevine vs the non-grapevine classification (composed by

inter-row cover crops and bare soil), so this methodology remained non-validated for weed

detection in the inter-row of the vineyards.

The omission errors (OE), as complementary to PAs, are shown in Table 5, where values

lower than 0.4 were obtained in 2017 for both fields and 1.7 in 2016 for field A. Thus, only 1.7% of

the bermudagrass objects were misclassified as bare soil, whereas less than 0.4% of weed patches

were misclassified in the rest of the cases, being far below those obtained by [25], who reported

values of 17% for frames at moderate weed coverage, and by [26], who obtained a 12% omission

error in the classification of grass (Bouteloua eriopoda Torrey) using UAV and OBIA techniques.

Moreover, no errors were quantified in the bare soil classification. From an agronomic perspec-

tive, a key issue for successful management is to report low OE values as it increases the chance of

controlling all of the weed patches and also reduces the risk of allowing weeds to go untreated

[75]. Therefore, bermudagrass maps obtained from the automatic VI-based OBIA algorithm can

be an accurate and suitable tool for farmers to control this species in vineyards.

Site-specific weed management. The bermudagrass maps could help farmers improve

weed control through a rational-programmed strategy based on site-specific weed manage-

ment (SSWM), targeting suitable control measures only where they are needed, either intra-

or inter-rows. In addition, these maps could also be used to both design a control management

strategy for organic vineyards through spraying organic herbicides such as clove oil, acetic and

citric acid products [76,77], and using herbicides in the case of non-organic vineyards, accord-

ing to the weed coverage. In this context, site-specific bermudagrass treatment maps were

designed by the OBIA algorithm (Fig 8) based on the weed maps as explained in the Materials

and Methods section, through delineating site-specific treatment zones according to the sev-

eral weed cover thresholds. Three user-adaptable treatment thresholds were selected in this

Table 5. Omission error statistics obtained for each year and field using RGB camera.

Year Field Omission error (%)

Bga Bs

2016 A 1.7 0.0

2017 A 0.4 0.0

B 0.1 0.0

aBg: Bermudagrass; Bs: Bare soil.

https://doi.org/10.1371/journal.pone.0218132.t005

Mapping bermudagrass in vineyard by UAV

PLOS ONE | https://doi.org/10.1371/journal.pone.0218132 June 11, 2019 14 / 21

https://doi.org/10.1371/journal.pone.0218132.t005
https://doi.org/10.1371/journal.pone.0218132


experiment: 0, 2.5, and 5%, where 0% implies that herbicides must be applied in the treatment

zone just when there is the presence of bermudagrass, and 5% that the herbicide must be

applied when weed coverage is equal or higher than 5%.

Fig 8. Site-specific treatment maps for bermudagrass patches in field A-2016 according treatment thresholds: a)

0%, b) 2.5%, and c) 5%. Only results for RGB camera are shown.

https://doi.org/10.1371/journal.pone.0218132.g008
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The potential herbicide savings, calculated in terms of untreated areas, extracted from the

SSWM maps are shown in Table 6. Since savings percentages were calculated based on bermu-

dagrass coverage, savings values varied for each scenario, e.g., the potential savings for field A-

2016 consisted of 48.3% from the more conservative prescription maps, since any grid with the

presence of bermudagrass was considered a treatment area, while potential savings of 23.4%

would be obtained for field B-2017 under the same conservative circumstance. Furthermore,

as expected, higher potential savings were observed for higher treatment thresholds [25]. In

that sense, about a 14% raise in potential savings was achieved using a 5% weed threshold

when compared to the more conservative one for the three cases analyzed. Consequently, the

reduction in the bare soil area resulted from the growth of grapevines and the increase in the

area infested by bermudagrass.

In summary, the combination of UAV imagery and the VI-OBIA algorithm developed pro-

vides automatic and accurate bermudagrass mapping. These weed maps could be used to

design site-specific bermudagrass management in organic vineyards as well as to create site-

specific prescription maps according to weed coverage for non-organic vineyards. These pre-

scription maps could aid in controlling bermudagrass in several agricultural seasons so that

the species could be eradicated. This PV-based approach could lead to herbicide reductions,

and also optimize fuel, field operating time and cost [74].

Conclusions

Based on the high competition caused by bermudagrass infestation in the inter-row of vine-

yards, the possibility of mapping this weed using UAV-imagery was evaluated to facilitate site-

specific weed management in the context of PV. Aerial images of several fields were captured

using two sensors (RGB and RGNIR) attached to the UAV that allowed us to obtain ultra-high

spatial resolution imagery and operate on demand according to the necessities of the grape-

vines. First, the spectral data analyses showed significant differences between the bare soil and

bermudagrass, then ExGR and GNDVI were the optimum VIs selected to carry out the dis-

crimination between both classes for the RGB- and RGNIR-orthomosaic, respectively. Second,

an accurate and fully automatic VI-based OBIA algorithm was developed to map bermuda-

grass infesting the inter-row of vineyards, where the optimum VI for each camera was imple-

mented. Grapevines were mapped using photogrammetric-based DSMs, thus avoiding

misclassification due to the spectral similarity between the vines and bermudagrass. High val-

ues of map classification accuracy (>97.7%) were achieved with each of the cameras, proving

that it is possible to map bare soil, grapevines, and bermudagrass at the vegetative stage based

on RGB- and RGNIR-imagery. Thus, due to the similar results and handling and cheaper cost

of the conventional camera, the use of an RGB sensor was recommended for that objective.

The analysis of the classified area from maps allowed us to quantify grapevine growth in

those years and revealed the area infested by bermudagrass. Thus, these bermudagrass maps

Table 6. Herbicide saving obtained from herbicide application maps as affected by treatment thresholds for RGB

imagery by year and field analyzed.

Year Field Herbicide saving by treatment thresholds (%)

0 2.5 5

2016 A 48.3 58.5 62.2

2017 A 24.4 33.5 38.7

B 23.4 31.9 36.5

These values correspond to a 1 x 0.5 m grid cell size.

https://doi.org/10.1371/journal.pone.0218132.t006
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generated by the VIs-based OBIA algorithm could help farmers improve weed control in

organic vineyards through a well-programmed strategy based on site-specific weed manage-

ment (SSWM). Moreover, site-specific bermudagrass treatment maps, according to the weed

coverage of the field, were designed by the algorithm to spray herbicides to be used for non-

organic vineyards in the context of precision viticulture. Using these prescription maps could

aid in controlling bermudagrass across several agricultural seasons and eradicating this

species.

This PV-based approach could reduce herbicide use, and optimize fuel, field operating

time, and costs.
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